- R拟合 | 一个分布能看到三个峰,怎么拟合出这三个正态分布的参数? | 高斯混合模型 与 EM算法
biomooc
R数学与统计r语言
1.效果已知数据符合上图分布,怎么求下图的三个分布的参数mu,sigma,及每个分布的权重lambda?2.代码:高斯混合模型(GaussianMixtureModel,简称GMM)library(mixtools)set.seed(123)#确保结果可重复#假设x是你的观测数据xsummary(mix)summaryofnormalmixEMobject:comp1comp2comp3lambd
- 理解泊松分布与正态分布的数学之美
背景简介在统计学和数据分析领域,泊松分布和正态分布是两种极其重要的概率分布。它们不仅在理论上具有深刻的意义,而且在各种实际应用中,如自然科学研究、金融风险评估、市场调查分析等领域都扮演着关键角色。本文将深入探讨泊松分布的推导过程和作为二项分布极限的情况,以及正态分布概率密度函数的积分求解方法和其最大值及拐点的位置。泊松分布的推导泊松分布是描述在固定时间间隔或空间区域内发生某事件的次数的概率分布。它
- 统计学①——概率论基础及业务实战
数据小斑马
统计学统计学基础概率分布随机变量期望和方差转盘
统计学系列目录(文末有超级大礼):统计学②——概率分布(几何,二项,泊松,正态分布)统计学③——总体与样本统计学④——置信区间统计学⑤——假设验证一、统计学是什么?统计学分为两类,一类是描述性统计学,通过对数据的集中趋势和变异趋势的刻画来描述数据的分布情况,集中趋势有平均值,中位数和众数三个指标,变异趋势则有全距,四分位距,百分位距,方差,标准差等指标来衡量另一类是推断统计学,通过对样本的统计来推
- 【C++】使用箱线图算法剔除数据样本中的异常值
目录一、箱线图算法介绍二、五数概括计算解释三、四分位距(IQR)与异常值判定四、箱线图在数据处理中的应用1.异常值检测2.数据分布比较3.偏态与离散程度分析4.非参数数据展示五、箱线图的局限性六、代码实现及注释七、如果这篇文章能帮助到你,请点个赞鼓励一下吧ξ(✿>◡❛)~一、箱线图算法介绍箱线图(Boxplot)是一种基于统计学的数据可视化和数据处理工具,箱线图假设数据样本服从正态分布,通过五数概
- Python进阶第三方库之Numpy
了解Numpy运算速度上的优势知道数组的属性,形状、类型应用Numpy实现数组的基本操作应用随机数组的创建实现正态分布应用应用Numpy实现数组的逻辑运算应用Numpy实现数组的统计运算应用Numpy实现数组之间的运算一、Numpy优势Numpy(NumericalPython)是一个开源的Python科学计算库,用于快速处理任意维度的数组。Numpy支持常见的数组和矩阵操作。对于同样的数值计算任
- Python进阶第三方库之Numpy
paid槮
pythonnumpy开发语言
了解Numpy运算速度上的优势知道数组的属性,形状、类型应用Numpy实现数组的基本操作应用随机数组的创建实现正态分布应用应用Numpy实现数组的逻辑运算应用Numpy实现数组的统计运算应用Numpy实现数组之间的运算一、Numpy优势Numpy(NumericalPython)是一个开源的Python科学计算库,用于快速处理任意维度的数组。Numpy支持常见的数组和矩阵操作。对于同样的数值计算任
- 模式识别与机器学习课程笔记(1):数学基础
Ro Jace
学习笔记机器学习笔记人工智能
模式识别与机器学习课程笔记(1):数学基础特征矢量和特征空间随机矢量的描述随机矢量的分布函数随机矢量的数字特征随机变量、随机矢量间的统计关系随机矢量的变换正态分布正态分布的定义正态分布随机矢量的性质离散随机矢量及其分布信息论矩阵微分法基本知识矢量或矩阵对于数量变量的微分二、数量函数对于矢量的微分三、矢量函数对于矢量的微分特征矢量和特征空间特征量的类型:物理量、次序量、名义量物理量:直接反映特征的实
- 离散型以及连续型随机变量
目录离散型随机变量定义与性质分布律分布函数连续型随机变量定义与性质概率密度函数分布函数多维随机变量二维离散型随机变量二维连续型随机变量常见的连续型分布离散型随机变量的概率质量函数和概率密度函数之间的关系是什么?如何计算连续型随机变量的概率密度函数?二维离散型随机变量的联合分布律是如何表示的?在实际应用中,如何选择合适的连续型分布来描述随机现象?正态分布的中心极限定理具体是什么,以及它在哪些情况下适
- (一)OpenCV——噪声去除(降噪)
高斯滤波器(针对高斯噪声)高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。常见的高斯噪声包括起伏噪声、宇宙噪声、热噪声和散粒噪声等等。高斯滤波(Gaussianfilter)包含许多种,包括低通、带通和高通等,我们通常图像上说的高斯滤波,指的是高斯模糊(GaussianBlur),是一种高斯低通滤波,其过滤调图像高频成分(图像细节部分),保留图像低频成分(图像平滑区域),所以对图
- Z-score异常值检测法
吴闹闹(●'◡'●)
人工智能算法
Z-score异常值检测法是一种基于统计学原理的异常值检测技术。它通过计算数据点与数据集平均值的标准化距离来判断该数据点是否为异常值。一、原理Z-score异常值检测法的原理是基于标准正态分布。它通过计算每个数据点与数据集平均值的差距,并将其转换为标准差的倍数,以此来评估数据点的异常程度。在标准正态分布中,大约68%的数据点位于平均值的一个标准差之内,95%的数据点位于两个标准差之内,而99.7%
- NumPy-随机数生成详解
GG不是gg
numpynumpy
NumPy-随机数生成详解一、随机数生成的基础:伪随机数与种子1.伪随机数的本质2.种子的设置:确保结果可复现二、常用随机数生成函数1.均匀分布随机数2.正态分布随机数3.整数随机数4.其他常用分布三、随机数生成的进阶操作1.随机排列与洗牌2.控制随机数的维度与形状四、随机数生成的应用场景1.数据增强2.蒙特卡洛模拟3.随机初始化参数五、注意事项NumPy作为Python数值计算的核心库,提供了功
- 医咖会免费STATA教程学习笔记——单因素方差分析
Unacandoit
stata单因素方差分析
单因素方差分析和单因素回归分析相同1.单因素方差分析需要满足的假设:(1)因变量为连续变量(2)至少有一个分类变量(大于等于2类)(3)观测值相互独立(4)没有异常值(5)服从正态分布(6)方差齐性2.准备工作(1)导入数据集:webusesystolic,clear(2)检验是否存在异常值:方法一:图形——箱线图——在变量中选择systolic——确定方法二:grahboxsystolic,ov
- torch.nn.init.kaiming_normal_
参考(5条消息)PytorchKaiming初始化(Initialization)中fan_in和fan_out的区别/应用场景_bxdzyhx的博客-CSDN博客torch.nn.init.kaiming_normal_使用正态分布对输入张量进行赋值fan_in如果权重是通过线性层(卷积或全连接)隐性确定的,则需设置mode=fan_in。例子:importtorchlinear_layer=t
- LL面试题11
三月七꧁ ꧂
破题·大模型面试语言模型gpt人工智能自然语言处理promptllama
物流算法实习面试题7道GLM是什么? GLM(GeneralizedLinearModel)是一种六义线性模型,用于建立变量之间的关系。它将线性回归模型推广到更广泛的数据分布,可以处理非正态分布的响应变量,如二项分布(逻辑回归)、泊松分布和伽玛分布等。GLM结合线性模型和非线性函数,通过最大似然估计或广义最小二乘估计来拟合模型参数。SVM的原理?怎么找到最优的线性分类器?支持向量是什么?
- 学习笔记(28):随机噪声的原理、作用及代码实现详解
宁儿数据安全
#机器学习学习笔记python
学习笔记(28):随机噪声的原理、作用及代码实现详解一、什么是随机噪声?为什么需要添加?在机器学习中,随机噪声是指数据中无法用特征解释的随机波动,通常符合某种概率分布(如正态分布)。在房价模拟中添加噪声的核心原因如下:1.模拟真实世界的不确定性真实房价除了受面积、房龄影响,还受装修情况、学区、交通、政策等未被建模的特征影响,这些因素的综合效应可抽象为“噪声”。示例:两套面积和房龄相同的房子,房价可
- 两个点 定位_基于双天线的北斗定位系统设计与实现
weixin_39697096
两个点定位
前期实际北斗模块定位误差统计分析中得出了北斗模块的定位误差分布服从正态分布,根据北斗模块定位误差分布的规律,利用在同一块电路板上的双天线模块接收北斗定位信号,将定位信息传给TMS320F28335DSP芯片,DSP对北斗模块给出的定位信息做实时算法处理,并将处理后的定位信息传给嵌入式ARM芯片,ARM芯片在TFT液晶屏上更新定位信息,同时根据用户要求来设置北斗模块的工作模式。在接收不到北斗定位信息
- day48
m0_62568655
python训练营python
ai举例子通俗易懂理解@浙大疏锦行下面用例子帮你理解这几个知识点:1.随机张量的生成:torch.randn函数torch.randn会生成符合标准正态分布(均值为0,标准差为1)的随机数张量,形状由输入的参数决定。•比如torch.randn(2,3),会生成一个2行3列的张量,里面的数是随机的,可能像这样:tensor([[0.52,-1.23,0.89],[-0.34,1.56,-0.71]
- OpenCV图像噪点消除五大滤波方法
慕婉0307
opencv基础opencv人工智能计算机视觉
在数字图像处理中,噪点消除是提高图像质量的关键步骤。本文将基于OpenCV库,详细讲解五种经典的图像去噪滤波方法:均值滤波、方框滤波、高斯滤波、中值滤波和双边滤波,并通过丰富的代码示例展示它们的实际应用效果。一、图像噪点与滤波基础1.1常见图像噪声类型高斯噪声:符合正态分布的随机噪声椒盐噪声:随机出现的黑白像素点泊松噪声:光子计数噪声量化噪声:模拟信号数字化过程中产生1.2滤波方法分类滤波类型特点
- 随机过程chap1基本概念
八点叫什么
随机过程笔记
思维导图(受伤了,一整张的太大塞不上来)重点知识辨析一维概率密度求解指路例题5、例题6两道例题给出了求解概率密度的两种思路:显式分布直接套原概率密度公式求解(如正态分布)隐式分布先求分布函数再进行求导得概率密度函数(如指数分布)带入原题细致分析——ex5<
- 30天pytorch从入门到熟练(day1)
一、总体工作思路本项目采用“从零构建”的策略,系统性地开展了深度学习模型的开发与优化工作。其目标在于通过全流程自研方式,深入理解模型构建、训练优化、推理部署的关键技术环节。整体路径分为以下核心阶段:模型初步构建:以最简单的线性模型y=Ax+B为起点,快速搭建数据流通路;数据生成机制设计:构建基于正态分布的可控数据生成器,逐步增加数据复杂度;模型复杂度提升:在逐步提高神经网络深度与宽度的同时,引入残
- Day48打卡 @浙大疏锦行
ayuan0119
python打卡shupython
知识点回顾:随机张量的生成:torch.randn函数在PyTorch中,torch.randn()是一个常用的随机张量生成函数,它可以创建一个由标准正态分布(均值为0,标准差为1)随机数填充的张量。这种随机张量在深度学习中非常实用,常用于初始化模型参数、生成测试数据或模拟输入特征。torch.randn(*size,out=None,dtype=None,layout=torch.strided
- 大数定律与中心极限定理:概率论的双子星
Algo-hx
概率论与数理统计概率论
目录引言5大数定律与中心极限定理5.1大数定律:频率的稳定性5.1.1辛钦大数定律定理内容5.1.2伯努利大数定律定理内容5.1.3切比雪夫大数定律定理内容对比总结表5.2中心极限定理:正态分布的普适性5.2.1独立同分布情形定理内容图释5.2.2李雅普诺夫定理定理内容核心思想图释5.2.3棣莫弗-拉普拉斯定理定理内容应用条件图释对比总结表5.3定理对比:LLNvsCLT引言当随机现象的个体行为无
- 高斯混合模型(Gaussian Mixture Model, GMM)
爱看烟花的码农
ML机器学习概率论人工智能
一、GMM是什么?高斯混合模型(GaussianMixtureModel,GMM)是一种概率模型,用于表示数据分布是由多个高斯分布(正态分布)的加权组合构成的。它假设数据点是从若干个高斯分布中生成的,每个高斯分布代表一个“簇”或“子群体”。GMM是一种软聚类方法,与K-Means不同,它不仅能将数据点分配到某个簇,还能给出数据点属于每个簇的概率。1.1核心思想混合模型:GMM认为数据集中的每个数据
- 6.11打卡
tt卡丁车
python
知识点回顾:1.随机张量的生成:torch.randn函数2.卷积和池化的计算公式(可以不掌握,会自动计算的)3.pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可importtorch#生成一个2x3的随机张量,元素来自标准正态分布a=torch.randn(2,3)print("随机张量a:\n",a)#
- python打卡day48
ZHPEN1
Python打卡python
随机函数与广播机制知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致一、随机张量生成#生成3x224x224的正态分布随机张量random_tensor=torch.randn(3,224,224)#生成5x5的0-1均匀分布随机张量uniform_te
- 【概率论】正态分布的由来——从大一同学的视角出发
应有光
基础知识概率论机器学习
数学系大佬勿喷,本文以非数同学的视角出发0.启发与思考正态分布平时常常遇到,无论是在概率论中的“中心极限定理”,还是平时在学习ML中遇到的“高斯混合模型”,或者是在深度学习中,常常将一些数据假设为正态分布的情况。我们平时可能由于知到中心极限定理,因此默认正态分布是一个很好的分布。但是,这为什么不能是平均分布呢?二项分布呢?泊松分布?或者是其它抽样分布?接下来我们将简要探讨正态分布的由来:1.背景我
- 随机变量及其分布:概率论的量化核心
Algo-hx
概率论与数理统计概率论
标题引言2随机变量及其分布2.1随机变量定义与分类2.2离散型随机变量:概率质量函数(PMF)概率分布律性质经典分布4.**各分布之间的关系**2.3分布函数(CDF):统一描述工具定义性质离散型应用2.4连续型随机变量:概率密度函数(PDF)定义性质经典分布均匀分布指数分布正态分布2.5随机变量函数的分布问题:已知XXX分布,求Y=g(X)Y=g(X)Y=g(X)分布解法框架重要公式(当ggg严
- 样本与抽样分布:统计推断的基石
Algo-hx
概率论与数理统计概率论
目录引言6样本与抽样分布6.1总体与样本核心概念6.2统计量:样本的数学摘要定义常用统计量重要性质证明:E(S2)=σ2E(S^2)=\sigma^2E(S2)=σ26.3三大抽样分布:统计推断的支柱6.3.1χ2\chi^2χ2分布:多个独立标准正态分布变量的平方和定义性质6.3.2ttt分布(学生氏分布)定义性质6.3.3FFF分布定义性质6.4正态总体的抽样分布定理6.4.1单正态总体情形6
- Qt工作总结05 <QPainter 绘制正态分布曲线>
Kilicc_
Qt工作总结开发语言qt工作总结
一、使用QPainter(不涉及场景)1.步骤计算数据的均值和标准差:计算数据的均值(μ)和标准差(σ)。定义正态分布函数:使用正态分布的概率密度函数(PDF)来计算每个点的值。绘制曲线:使用Qt的绘图功能(如QPainter)来绘制曲线。2、例子2.1.代码数据准备:data是绘制正态分布曲线的数据集。计算均值和标准差:calculateMeanAndStdDev函数计算数据的均值和标准差。正态
- 深度学习基础知识总结
1.BatchNorm2d加速收敛:BatchNormalization可以使每层的输入保持较稳定的分布(接近标准正态分布),减少梯度更新时的震荡问题,从而加快模型训练速度。减轻过拟合:批归一化引入了轻微的正则化效果,因为它依赖于mini-batch中的统计信息,这种方式可以减少对单个样本的过度拟合。提高模型性能:在训练过程中,BatchNormalization通过动态调整激活值的分布,让模型更
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默