gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py

简介

回答这个问题:RubyPort的口下,一共定义了六个口,分别是mem_request_port,mem_response_port,pio_request_port,pio_response_port,in_ports, interrupt_out_ports,他们分别有什么用,应该怎么接

overview是下面这个图。
gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py_第1张图片

以一个简单的l1 cache为例子

https://www.gem5.org/documentation/learning_gem5/part3/simple-MI_example/

首先是l1cache对子函数的连接

class L1Cache(L1Cache_Controller):
	。。。
	def connectQueues(self, ruby_system):
		。。。
		self.mandatoryQueue = MessageBuffer()
        self.requestFromCache = MessageBuffer(ordered = True)
        self.requestFromCache.master = ruby_system.network.slave
        self.responseFromCache = MessageBuffer(ordered = True)
        self.responseFromCache.master = ruby_system.network.slave
        self.forwardToCache = MessageBuffer(ordered = True)
        self.forwardToCache.slave = ruby_system.network.master
        self.responseToCache = MessageBuffer(ordered = True)
        self.responseToCache.slave = ruby_system.network.master

然后是system对子函数的连接操作

step 1对一个RubySystem延伸的类,他的controller是python自己定义的。
step 2 这里它简化了一下,只有一个dir controller,也就是只有一个memory ctrl,但是 l1cache还是每个cpu都有一个的。
step3 创建了self.controller之后,并没有互联! 这个rubysystem调用了自己的子类的子函数连接了网络和controllers。
step4 显式的连接cpu 与ruby system的 sequencer。

#step 1
class MyCacheSystem(RubySystem):
	#step 2 
	self.controllers = [L1Cache(system, self, cpu) for cpu in cpus] + [ DirController(self, system.mem_ranges, mem_ctrls) ]
	#step 3
	self.network.connectControllers(self.controllers)
	#step 4
	# Connect the cpu's cache, interrupt, and TLB ports to Ruby
        for i,cpu in enumerate(cpus):
            cpu.icache_port = self.sequencers[i].slave
            cpu.dcache_port = self.sequencers[i].slave
            isa = buildEnv['TARGET_ISA']
            if isa == 'x86':
                cpu.interrupts[0].pio = self.sequencers[i].master
                cpu.interrupts[0].int_master = self.sequencers[i].slave
                cpu.interrupts[0].int_slave = self.sequencers[i].master
            if isa == 'x86' or isa == 'arm':
                cpu.itb.walker.port = self.sequencers[i].slave
                cpu.dtb.walker.port = self.sequencers[i].slave

然后我们看看每一步怎么连接的细节:

step3 network.connectControllers(self.controllers)

先看看前置的一些条件

这里的self.controllers 创建了64个L1缓存控制器,每个控制器对应一个CPU,加上一个目录控制器。因此,controllers 列表总共包含65个控制器。
这里有一个不是很常规的情况:每个router连接了一个controller,也就是有65个router。正常应该是64个router对应64个cpu的,这里为了简便,直接每个controller分配一个router。同时,router间的互连也简化为crossbar,每个router连接了剩下所有的64个 router

 # Create one router/switch per controller in the system
        self.routers = [Switch(router_id = i) for i in range(len(controllers))]
        #outer间的互连也简化为crossbar,每个router连接了剩下所有的router,例如64个router
        for ri in self.routers:
            for rj in self.routers:
                if ri == rj: continue # Don't connect a router to itself!
                link_count += 1
                self.int_links.append(SimpleIntLink(link_id = link_count,
                                                    src_node = ri,
                                                    dst_node = rj))

这些前置条件过后,看怎么连接controller和router的:

def connectControllers(self, controllers):
        """Connect all of the controllers to routers and connect the routers
           together in a point-to-point network.
        """
        # Create one router/switch per controller in the system
        self.routers = [Switch(router_id = i) for i in range(len(controllers))]

        # Make a link from each controller to the router. The link goes
        # externally to the network.
        self.ext_links = [SimpleExtLink(link_id=i, ext_node=c,
                                        int_node=self.routers[i])
                          for i, c in enumerate(controllers)]

        # Make an "internal" link (internal to the network) between every pair
        # of routers.
        link_count = 0
        self.int_links = []
        for ri in self.routers:
            for rj in self.routers:
                if ri == rj: continue # Don't connect a router to itself!
                link_count += 1
                self.int_links.append(SimpleIntLink(link_id = link_count,
                                                    src_node = ri,
                                                    dst_node = rj))

把这些代码画成图如下:

                +----------------+
                |     CPU 0      |
                | icache_port    |
                | dcache_port    |
                +----------------+
                        |
                        v
                +----------------+
                | RubySequencer  |
                +----------------+
                        |
                        v
                 +---------------+
                 |   L1 Cache   |			 |   L1 Cache.sub   |	
		         |viaSimpleExtLin|          |responseFromCache.master|   |forwardToCache.slave|                |responseToCache.slave|

                 +---------------+         	  +---------------+          +---------------+                           +---------------+  
                        | 							 |                          |                                            |
                        v  							 v                          v                                            v
                +----------------+          +----------------+  
        |rubysystem.network.Router 0|       |rubysystem.network.slave|   |rubysystem.network.slave|           |ruby_system.network.master       |                            
                +----------------+		    +----------------+
 
                ... (多个类似的组件重复上述连接关系) ...

                +----------------+
                |     CPU 63     |
                | icache_port    |
                | dcache_port    |
                +----------------+
                        |
                        v
                +----------------+
                | RubySequencer  |
                +----------------+
                        |
                        v
                 +---------------+
                 |   L1 Cache   |
                 +---------------+
                        |
                        v
                +----------------+
                |   Router 63    |
                +----------------+
 			
				第65个router比较特殊,在这个简化的实例里没有连接l1而是连接了dircontroller.
				同时每个router之间都是连接的。
                +----------------+
                |   Router 64    |
                +----------------+
                 ^            |
                 |            v
                +----------------+
                |   DirController|
                +----------------+

代码和图联合 分析

按照https://www.gem5.org/documentation/learning_gem5/part3/simple-MI_example/ 的顺序,

连接l1 cache与router

rubysystem 创建了一堆controller,随后创建了sequencer但是还没连,然后调用network。connectController连接了controlle和router,

 # Create the network and connect the controllers.
        # NOTE: This is quite different if using Garnet!
        self.network.connectControllers(self.controllers)
        self.network.setup_buffers()

也就是gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py_第2张图片 l1cache和network.router通过simpleextlink相连的。

连接cpu 与sequencer

随后,rybysystem 显式的连接了之前创建的sequence和 cpu的interrupt 和itb.walker.port.

 # Connect the cpu's cache, interrupt, and TLB ports to Ruby
        for i,cpu in enumerate(cpus):
            cpu.icache_port = self.sequencers[i].slave
            cpu.dcache_port = self.sequencers[i].slave
            isa = buildEnv['TARGET_ISA']
            if isa == 'x86':
                cpu.interrupts[0].pio = self.sequencers[i].master
                cpu.interrupts[0].int_master = self.sequencers[i].slave
                cpu.interrupts[0].int_slave = self.sequencers[i].master
            if isa == 'x86' or isa == 'arm':
                cpu.itb.walker.port = self.sequencers[i].slave
                cpu.dtb.walker.port = self.sequencers[i].slave

图里也就是连接这一部分:
gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py_第3张图片

连接l1cache 和rubysystem.networ

这里是隐藏在l1初始化的时候,创建l1cache需要初始化,(对这个python文件)初始化的时候l1cache就传递进来了rubysystem这个对象。

self.connectQueues(ruby_system)

然后l1cache连接了rubyssytem的master和slaveport.现在叫out_port 和in_port 。

 def connectQueues(self, ruby_system):
        """Connect all of the queues for this controller.
        """
        self.mandatoryQueue = MessageBuffer()
        self.requestFromCache = MessageBuffer(ordered = True)
        self.requestFromCache.master = ruby_system.network.slave
        self.responseFromCache = MessageBuffer(ordered = True)
        self.responseFromCache.master = ruby_system.network.slave
        self.forwardToCache = MessageBuffer(ordered = True)
        self.forwardToCache.slave = ruby_system.network.master
        self.responseToCache = MessageBuffer(ordered = True)
        self.responseToCache.slave = ruby_system.network.master
        #小插曲: master和slave的说法已经被弃用了 by src/mem/ruby/network/Network.py
	        #in_port = VectorResponsePort("CPU input port")
	   		#slave = DeprecatedParam(in_port, "`slave` is now called `in_port`")
	    	#out_port = VectorRequestPort("CPU output port")
	    	#master = DeprecatedParam(out_port, "`master` is now called `out_port`")

图里是这一部分,描述的l1的cache的子成员直接和network相连。
gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py_第4张图片

关键问题:这些port结构连上了,但是属于哪些类型的rubyport?

rubyport。hh里有六种类型,这些结构上相连的port各自属于哪些类型? 我们一个个搜索从结构上看过来

RubySequencer

代码用的self.sequencers[i].master/slave,其中 self.sequencers = [RubySequencer(version = i,。。。
RubySequencer 从哪里来的呢?
在src/mem/ruby/system/Sequencer.py找到了 RubySequencer的定义:

class RubySequencer(RubyPort):
    type = "RubySequencer"
    cxx_class = "gem5::ruby::Sequencer"
    cxx_header = "mem/ruby/system/Sequencer.hh"

RubySequencer 不是Sequencer: python与c++的关系。

细看会发现,我们用的是 RubySequencer 不是Sequencer ,RubySequencer是python的class,他的type是cpp里的"gem5::ruby::Sequencer"。还告诉我们用的头文件是 “mem/ruby/system/Sequencer.hh”。

cpp Sequencer.hh 没有

先看src/mem/ruby/system/Sequencer.hh 中,

class Sequencer : public RubyPort

所以Sequencer 其实是继承自RubyPort的。而RubyPort继承自clockedobject.
这俩都没有.slave 子成员。 那我们的python代码调用的slave来自于哪里?

RubyPort的python定义

对rubyport最关键的代码出现了:src/mem/ruby/system/Sequencer.py
没错,竟然没有一个单独的python文件 RubyPort.py 而是在 Sequencer.py里。
step1 这个代码把c++和python联系起来了。
step2 这个代码创建了新的python里的名字

  1. in_port同时也是弃用的slave
  2. interrupt_out_port同时也是弃用的master
  3. pio_request_port同时也是弃用的 pio_master_port
  4. mem_request_port 同时也是弃用的mem_master_port
  5. pio_response_port 同时也是弃用的pio_slave_port
class RubyPort(ClockedObject):
    type = "RubyPort"
    abstract = True
    cxx_header = "mem/ruby/system/RubyPort.hh"
    cxx_class = "gem5::ruby::RubyPort"

    version = Param.Int(0, "")
    in_ports = VectorResponsePort(
        "CPU side of this RubyPort/Sequencer. "
        "The CPU request ports should be connected to this. If a CPU "
        "has multiple ports (e.g., I/D ports) all of the ports for a "
        "single CPU can connect to one RubyPort."
    )
    slave = DeprecatedParam(in_ports, "`slave` is now called `in_ports`")

    interrupt_out_port = VectorRequestPort(
        "Port to connect to x86 interrupt "
        "controller to send the CPU requests from outside."
    )
    master = DeprecatedParam(
        interrupt_out_port, "`master` is now called `interrupt_out_port`"
    )

    pio_request_port = RequestPort("Ruby pio request port")
    pio_master_port = DeprecatedParam(
        pio_request_port, "`pio_master_port` is now called `pio_request_port`"
    )

    mem_request_port = RequestPort("Ruby mem request port")
    mem_master_port = DeprecatedParam(
        mem_request_port, "`mem_master_port` is now called `mem_request_port`"
    )

    pio_response_port = ResponsePort("Ruby pio response port")
    pio_slave_port = DeprecatedParam(
        pio_response_port, "`pio_slave_port` is now called `pio_response_port`"
    )

这些python的port和 c++port的定义

是python提供字符串描述,然后调用python通过名字找port的函数,然后cpp响应这个函数,返回对应的cpp对象。由此,python定义的port和c++的port联系起来。
下面是细节,分别是根据名字字符串 找port 的函数, c++对port名字的回应, 和这些port的对应关系。

根据名字字符串 找port 的函数

在src/python/m5/params.py中

class RequestPort(Port):
    # RequestPort("description")
    def __init__(self, desc):
        super().__init__("GEM5 REQUESTOR", desc, is_source=True)

c++对port名字的回应

Port &
RubyPort::getPort(const std::string &if_name, PortID idx)
{
    if (if_name == "mem_request_port") {
        return memRequestPort;
    } else if (if_name == "pio_request_port") {
        return pioRequestPort;
    } else if (if_name == "mem_response_port") {
        return memResponsePort;
    } else if (if_name == "pio_response_port") {
        return pioResponsePort;
    } else if (if_name == "interrupt_out_port") {
        // used by the x86 CPUs to connect the interrupt PIO and interrupt
        // response port
        if (idx >= static_cast<PortID>(request_ports.size())) {
            panic("%s: unknown %s index (%d)\n", __func__, if_name, idx);
        }

        return *request_ports[idx];
    } else if (if_name == "in_ports") {
        // used by the CPUs to connect the caches to the interconnect, and
        // for the x86 case also the interrupt request port
        if (idx >= static_cast<PortID>(response_ports.size())) {
            panic("%s: unknown %s index (%d)\n", __func__, if_name, idx);
        }

        return *response_ports[idx];
    }

    // pass it along to our super class
    return ClockedObject::getPort(if_name, idx);
}

python port和 cpp port的对应关系:根据name返回

mem_request_port 和 memRequestPort

python 文件中,mem_request_port 是来自于 RequestPort(“Ruby mem request port”)
mem_request_port = RequestPort(“Ruby mem request port”)
查找返回的是 if (if_name == “mem_request_port”) { return memRequestPort;

pio_request_port和 pioRequestPort

python 文件中, pio_request_port = RequestPort(“Ruby pio request port”)
查找的cpp返回的是 else if (if_name == “pio_request_port”) { return pioRequestPort;

pio_response_port 和 pioResponsePort

python 文件中 pio_response_port = ResponsePort(“Ruby pio response port”)
查找的cpp返回的是 else if (if_name == “pio_response_port”) { return pioResponsePort;

interrupt_out_port 和*request_ports[idx]

python 文件中 pio_response_port = ResponsePort(“Ruby pio response port”)
查找的cpp返回的是 else if (if_name == “interrupt_out_port”) { // used by the x86 CPUs to connect the interrupt PIO and interrupt // response port if (idx >= static_cast(request_ports.size())) { panic(“%s: unknown %s index (%d)\n”, func, if_name, idx); }

in_ports 和 *response_ports[idx]

python 文件中 in_ports = VectorResponsePort( "CPU side of this RubyPort/Sequencer. " “The CPU request ports should be connected to this. If a CPU " “has multiple ports (e.g., I/D ports) all of the ports for a " “single CPU can connect to one RubyPort.” )
查找的cpp返回的是 else if (if_name == “in_ports”) { // used by the CPUs to connect the caches to the interconnect, and // for the x86 case also the interrupt request port if (idx >= static_cast(response_ports.size())) { panic(”%s: unknown %s index (%d)\n”, func, if_name, idx); } return *response_ports[idx];

这些python port(同时也代表c++port) 怎么连接的

核心是这些连接是由python文件定义,我们还是以 simple-MI_example.py为例子:

cpu和sequencer

# Connect the cpu's cache, interrupt, and TLB ports to Ruby
        for i,cpu in enumerate(cpus):
            cpu.icache_port = self.sequencers[i].slave
            cpu.dcache_port = self.sequencers[i].slave
            isa = buildEnv['TARGET_ISA']
            if isa == 'x86':
                cpu.interrupts[0].pio = self.sequencers[i].master
                cpu.interrupts[0].int_master = self.sequencers[i].slave
                cpu.interrupts[0].int_slave = self.sequencers[i].master
            if isa == 'x86' or isa == 'arm':
                cpu.itb.walker.port = self.sequencers[i].slave
                cpu.dtb.walker.port = self.sequencers[i].slave

cpu 与sequencer 的连接图

画成图就是
gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py_第5张图片

network 和 l1 dir

l1 连接l1的port和network

def connectQueues(self, ruby_system):
        """Connect all of the queues for this controller.
        """
        self.mandatoryQueue = MessageBuffer()
        self.requestFromCache = MessageBuffer(ordered = True)
        self.requestFromCache.master = ruby_system.network.slave
        self.responseFromCache = MessageBuffer(ordered = True)
        self.responseFromCache.master = ruby_system.network.slave
        self.forwardToCache = MessageBuffer(ordered = True)
        self.forwardToCache.slave = ruby_system.network.master
        self.responseToCache = MessageBuffer(ordered = True)
        self.responseToCache.slave = ruby_system.network.master

DirController 里,连接dir 的port和network

def connectQueues(self, ruby_system):
        self.requestToDir = MessageBuffer(ordered = True)
        self.requestToDir.slave = ruby_system.network.master
        self.dmaRequestToDir = MessageBuffer(ordered = True)
        self.dmaRequestToDir.slave = ruby_system.network.master

        self.responseFromDir = MessageBuffer()
        self.responseFromDir.master = ruby_system.network.slave
        self.dmaResponseFromDir = MessageBuffer(ordered = True)
        self.dmaResponseFromDir.master = ruby_system.network.slave
        self.forwardFromDir = MessageBuffer()
        self.forwardFromDir.master = ruby_system.network.slave
        self.responseFromMemory = MessageBuffer()
## network 里,连接router和 l1以及dir
```python
        self.ext_links = [SimpleExtLink(link_id=i, ext_node=c,
                                        int_node=self.routers[i])
                          for i, c in enumerate(controllers)]

network 里连接network.router 和conrollers

# Make a link from each controller to the router. The link goes
        # externally to the network.
        self.ext_links = [SimpleExtLink(link_id=i, ext_node=c,
                                        int_node=self.routers[i])
                          for i, c in enumerate(controllers)]

network with routers 与l1, dir 的连接图

画成图就是
gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py_第6张图片
#小结
再把sequencer中的cacher和l1相连起来就全部串起来了
最后的总结图:
gem5 RubyPort: mem_request_port作用与连接 simple-MI_example.py_第7张图片

你可能感兴趣的:(GEM5,片上网络NoC,硬件架构)