TiDB高可用整理

TiDB 整体架构

在内核设计上,TiDB 分布式数据库将整体架构拆分成了多个模块,各模块之间互相通信,组成完整的 TiDB 系统。对应的架构图如下:

TiDB高可用整理_第1张图片

  • TiDB Server:SQL 层,对外暴露 MySQL 协议的连接 endpoint,负责接受客户端的连接,执行 SQL 解析和优化,最终生成分布式执行计划。TiDB 层本身是无状态的,实践中可以启动多个 TiDB 实例,通过负载均衡组件(如 LVS、HAProxy 或 F5)对外提供统一的接入地址,客户端的连接可以均匀地分摊在多个 TiDB 实例上以达到负载均衡的效果。TiDB Server 本身并不存储数据,只是解析 SQL,将实际的数据读取请求转发给底层的存储节点 TiKV(或 TiFlash)。
  • PD (Placement Driver) Server:整个 TiDB 集群的元信息管理模块,负责存储每个 TiKV 节点实时的数据分布情况和集群的整体拓扑结构,提供 TiDB Dashboard 管控界面,并为分布式事务分配事务 ID。PD 不仅存储元信息,同时还会根据 TiKV 节点实时上报的数据分布状态,下发数据调度命令给具体的 TiKV 节点,可以说是整个集群的“大脑”。此外,PD 本身也是由至少 3 个节点构成,拥有高可用的能力。建议部署奇数个 PD 节点。
  • 存储节点
    • TiKV Server:负责存储数据,从外部看 TiKV 是一个分布式的提供事务的 Key-Value 存储引擎。存储数据的基本单位是 Region,每个 Region 负责存储一个 Key Range(从 StartKey 到 EndKey 的左闭右开区间)的数据,每个 TiKV 节点会负责多个 Region。TiKV 的 API 在 KV 键值对层面提供对分布式事务的原生支持,默认提供了 SI (Snapshot Isolation) 的隔离级别,这也是 TiDB 在 SQL 层面支持分布式事务的核心。TiDB 的 SQL 层做完 SQL 解析后,会将 SQL 的执行计划转换为对 TiKV API 的实际调用。所以,数据都存储在 TiKV 中。另外,TiKV 中的数据都会自动维护多副本(默认为三副本),天然支持高可用和自动故障转移。
    • TiFlash:TiFlash 是一类特殊的存储节点。和普通 TiKV 节点不一样的是,在 TiFlash 内部,数据是以列式的形式进行存储,主要的功能是为分析型的场景加速。

TiDB 数据库的存储

TiDB高可用整理_第2张图片

  • 本地存储 (RocksDB)
  • Raft 协议
  • Region
  • MVCC

TiKV 架构

TiDB高可用整理_第3张图片

高可用方案

同城三数据中心方案

TiDB高可用整理_第4张图片
优点:

  • 所有数据的副本分布在三个数据中心,具备高可用和容灾能力
  • 任何一个数据中心失效后,不会产生任何数据丢失 (RPO = 0)
  • 任何一个数据中心失效后,其他两个数据中心会自动发起 leader election,并在合理长的时间内(通常情况 20s 以内)自动恢复服务

缺点:

性能受网络延迟影响。具体影响如下:

  • 对于写入的场景,所有写入的数据需要同步复制到至少 2 个数据中心,由于 TiDB 写入过程使用两阶段提交,故写入延迟至少需要 2 倍数据中心间的延迟。
  • 对于读请求来说,如果数据 leader 与发起读取的 TiDB 节点不在同一个数据中心,也会受网络延迟影响。
  • TiDB 中的每个事务都需要向 PD leader 获取 TSO,当 TiDB 与 PD leader 不在同一个数据中心时,它上面运行的事务也会因此受网络延迟影响,每个有写入的事务会获取两次 TSO。

两地三中心部署

TiDB高可用整理_第5张图片

  • 优点
    • Region Leader 都在同城低延迟机房,数据写入速度更优。
    • 两中心可同时对外提供服务,资源利用率更高。
    • 可保证任一数据中心失效后,服务可用并且不发生数据丢失。
  • 缺点
    • 因为数据一致性是基于 Raft 算法实现,当同城两个数据中心同时失效时,因为异地灾备中心只剩下一份副本,不满足 Raft 算法大多数副本存活的要求。最终将导致集群暂时不可用,需要从一副本恢复集群,只会丢失少部分还没同步的热数据。这种情况出现的概率是比较小的。
    • 由于使用到了网络专线,导致该架构下网络设施成本较高。
    • 两地三中心需设置 5 副本,数据冗余度增加,增加空间成本。

TiDB高可用整理_第6张图片

你可能感兴趣的:(信创,tidb,数据库)