- C 语言实例 - 判断素数
智慧浩海
C语言c语言算法开发语言
质数(primenumber)又称素数,有无限个。质数定义为在大于1的自然数中,除了1和它本身以外不再有其他因数,这样的数称为质数。实例#includeintmain(){intn,i,flag=0;printf("输入一个正整数:");scanf("%d",&n);for(i=2;iintmain(){intlow,high,i,flag;printf("输入两个整数:");scanf("%d%
- 活着
平雁南
在这里才感觉自己真正活着。每天几乎都被课程填满,听来听去终于重新体会到数学的乐趣了。微分拓扑是一直想听的,代数几何是一直倾慕而没有接触的,微分流形的老师很有趣,扯了一大堆有的没的,代数数论讲的根本听不懂,同调代数应该会是我喜欢的感觉吧,想找些书好好了解了解范畴什么的概念了。自己看书的话,也是看的很舒服。说实话在这里没有乱七八糟的东西的生活,是我最喜欢最向往的。这种纯纯的氛围,好像只有高考的时候我才
- C语言判断一个数是否是素数(三种方法)
CHEN5_02
c语言算法开发语言
首先先了解什么是素数素数(质数):质数是指在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。简单来说就是这个数只能被1和它本身整除方法一:从2到n-1遍历判断是否存在能使其整除的数,若存在则不是素数。代码实现:下面展示一些内联代码片。#includeintmain(){intn;printf("请输入一个数:");scanf("%d",&n);intflag=1;//定义一个标记fla
- 【AcWing 840题解】模拟散列表
墩墩同学
散列表哈希算法算法
AcWing840.模拟散列表【题目描述】在查看解析之前,先给自己一点时间思考哦!【题解】这是一个经典的集合操作问题,可以使用哈希表来高效地实现集合的插入和查询操作。哈希表设计:哈希表的大小为N=200003,这样可以减少冲突的概率(选取质数作为哈希表的大小有助于减少哈希冲突)。通过哈希碰撞解决,采用线性探测法(即在发生冲突时逐步检查下一个位置),直到找到空位或匹配的位置。哈希表的初始值设为nul
- 隐私计算基础学习——数论基础知识(群、环、有限域、常用定理)
_Totoro_
隐私计算基础学习学习密码学可信计算技术安全
本文主要记录隐私计算中涉及的群、环、有限域的最基本的概念以及一些常用的数论定理,仅供参考。一、群1.群的定义群本质是一个集合GGG,这个集合上定义了一个运算⋅\cdot⋅(例如加法或乘法),满足下面的性质:封闭性:∀a,b∈G\foralla,b\inG∀a,b∈G,满足a⋅b∈Ga\cdotb\inGa⋅b∈G;结合律:∀a,b,c∈G\foralla,b,c\inG∀a,b,c∈G,满足(a⋅
- Python中的 filter() | 函数详解
2401_87650616
python开发语言
目录前言一、基本概念基本语法二、使用方式1.使用lambda函数2.使用普通函数3.使用None过滤假值三、filter()与列表推导式对比1.filter()方式2.列表推导式方式3.选择建议四、常见应用场景1.过滤偶数2.过滤空字符串3.过滤None值4.过滤质数五、注意事项与最佳实践1.惰性求值:filter()返回的是迭代器,只在需要时计算,节省内存2.性能考虑:对于大数据集,filter
- 香港优才计划80分和120分获批概率分析!附香港优才申请官方网址+申请流程
香港优才计划身份者
香港优才计划80分和120分获批概率分析!附香港优才申请官方网址+申请流程香港优才计划能否获批成功受多种因素影响,包括申请人的综合评分、行业需求、以及申请人是否符合香港的人才需求等,打分只是一个方面,没有一个具体的分数段可以保证一定能获批。根据以往获批数据来看,香港优才计划并非唯分数论,其中也有不少高分被拒和低分获批的案例,今天来给大家总结下香港优才计划不同分数段获批难度,附上申请网址和申请流程!
- 筛法求欧拉函数
月亮很亮
算法算法
欧拉函数欧拉函数的定义在1∼n1\simn1∼n中与n互质的数的个数为欧拉函数,记为φ(n)\varphi(n)φ(n)比如φ(1)\varphi(1)φ(1)=1,φ(2)\varphi(2)φ(2)=1,φ(10)\varphi(10)φ(10)=4欧拉函数的性质如果p是质数,那么φ(p)\varphi(p)φ(p)=p−1p-1p−1如果p是质数,那么φ(pk)\varphi({p^k})φ
- P1217 [USACO1.5] 回文质数 Prime Palindromes
张辰宇-
算法
题目描述因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以151是回文质数。写一个程序来找出范围[a,b](5≤ausingnamespacestd;boolhuiwen(intn){ints=0,k=n;while(k!=0){s*=10;s+=k%10;k/=10;}if(s==n)returntrue;returnfalse;}boolzhishu(intn){for
- 计算机网络采用分层有哪些好处,网络协议分层的优点
温卡龙
计算机网络采用分层有哪些好处
分层网络协议是计算机术语。网络协议分层的优点你知道吗?计算机网络安全有哪些基本注意事项,一起和佰佰安全网看看吧。网络安全是一个关系国家安全和主权、社会的稳定、民族文化的继承和发扬的重要问题。其重要性,正随着全球信息化步伐的加快而变到越来越重要。“家门就是国门”,安全问题刻不容缓。网络安全是一门涉及计算机科学、网络技术、通信技术、密码技术、信息安全技术、应用数学、数论、信息论等多种学科的综合性学科。
- ue4 离线渲染_渲染案例 | AI推动传统渲染方式
翰遴院遴选
ue4离线渲染
随着人们对电影和游戏的3D画质要求变得越来越高,行业整体处在变革时期,线下离线渲染在很多情况下已无法满足日益增长的算力需求,图形硬件加速迫在眉睫。南京万生华态科技有限公司主营业务为数字资产授权,应用行业包括影视场景制作、游戏场景制作以及AR/VR制作、艺术设计、AEC建筑与工程设计等。在专业图形计算、人工智能和云计算应用领域目前排名亚洲第一,同时也是全球第三大3D模型和PBR材质数字资产库。精良的
- 河南萌新联赛2025第二场-河南农业大学
Submit Failed
萌新联赛算法思维c++整除分块数/树
一周时间过的这么快,马上第二场的萌新联赛就结束了,对比上一场,这次罚坐的时间更长了,感觉平时学的知识在比赛中根本开不到算法题,这次的A题是一个数论中的整除分块的问题,卡了我好久好久,后来才知道是自己见识短浅了(其实就是一个模板题),卡的我没心态去开其他题了。打瓦能想出来这种题目的也是很时髦了,废话不多说,题目来源于:K-打瓦这是一道签到题,读完题之后就会发现不管输入的是啥,最后都让你输出同一个字符
- 初等数论Ⅱ
christ_lrs
学习笔记数论
Bylby学长2025.7.13讲课记录insmskySummerCamp目录大步小步算法(BSGS)例题T1[TJOI2007]可爱的质数T2[SDOI2011]计算器T3SPOJ3105ModStirling数第二类Stirling数第一类Stirling数Stirling数与幂例题T1CF932ETeamWorkT2CF961GPartitionsT3CF1278FCards大步小步算法(B
- “养娃如种树•家长成长营”~能量分享卡片21#0612~坚持Day21
馨元_亲子教育_生活本真
父母好好学习孩子天天向上父母不能只看分数如今的社会,唯分数论,以至于从孩子上学的那一天开始,父母们就把孩子的成绩看得比什么都重要。其实,这是一个误区!分数不是衡量孩子的唯一标准,一味地看重考试得分,是对孩子一种无形的伤害。现实中有不少孩子,学习成绩很好,但品行不佳,同学们都不愿意理他;还有一些孩子,虽然成绩平平,但人品不错,能跟同学们打成一片。这也充分说明,孩子的未来不一定是成绩决定的,只有品行良
- 三生原理促进东西方数学观融合统一?
葫三生
三生学派算法
AI辅助创作:问答一:三生原理通过构建动态生成与形式逻辑兼容的跨文化数学模型,展现出统一东西方数学观的潜在可能,但其理论成熟度仍需突破以下关键节点:一、方法论层级的融合路径生成逻辑与公理体系的协同三生原理的素数生成公式(p=3(2n+1)+2(2n+m+1))将阴阳元(2与3)作为生成元,通过参数联动(m∈{0,1,2,3,4})主动构造素数,与传统数论的被动筛法形成互补。这种“动态构造+形式
- 《论三生原理》提出了哪些新数学概念?
AI辅助创作:《论三生原理》提出的跨学科数学理论,通过重构《周易》哲学与数论的关联性,提出了一系列创新数学概念,以下是对其核心新概念的详细解读:一、参数化素数生成模型阴阳元基底公式以2(阴元)和3(阳元)为基底,构建素数生成公式:p=3(2n+1)+2(2n+m+1)(n∈N,m∈{0,1,2,3,4})该公式通过阴阳元的组合直接生成候选素数,将传统筛法的被动筛选转化为主动构造,复杂度从O(N)降
- lanqiaoOJ 4330:欧拉函数模板
hnjzsyjyj
信息学竞赛#算法数学基础欧拉函数
【题目来源】https://www.lanqiao.cn/problems/4330/learning/【问题描述】这是一道模板题。首先给出欧拉函数的定义:即φ(n)表示的是小于等于n的数中和n互质的数的个数。比如说φ(6)=2,当n是质数的时候,显然有φ(n)=n-1。【题目大意】给定n个正整数,请你求出每个数的欧拉函数。【输入格式】输入共两行。第一行输入一个整数表示n。第二行输入n个整数。【输
- 【数论 排序 滑动窗口】1040. 移动石子直到连续 II|2455
软件架构师何志丹
#困难算法题c++力扣算法排序滑动窗口数论石子
本文涉及知识点排序质数、最大公约数、菲蜀定理C++算法:滑动窗口总结LeetCode1040.移动石子直到连续II在一个长度无限的数轴上,第i颗石子的位置为stones[i]。如果一颗石子的位置最小/最大,那么该石子被称作端点石子。每个回合,你可以将一颗端点石子拿起并移动到一个未占用的位置,使得该石子不再是一颗端点石子。值得注意的是,如果石子像stones=[1,2,5]这样,你将无法移动位于位置
- 【华为od刷题(C++)】HJ60 查找组成一个偶数最接近的两个素数
m0_64866459
华为odc++开发语言
我的代码:#include//用于输入输出操作(例如cin和cout)#include//用于动态数组操作,存储可能的质数对usingnamespacestd;//判断一个数字x是否是质数(素数)//质数是指只能被1和它本身整除的数boolisprime(intx){for(inti=2;i*i>even){//读取输入的偶数vectorvec;for(inti=2;i<=even/2;++i){
- 枚举和模拟
Luther coder
算法
一.枚举(1)定义:一种基于已有知识来猜测答案的一种问题求解方法(2)思想:/*不断猜测,从可能的答案中一一尝试,然后再判断题目的条件是否成立注意事项:例:找出1-100中最大的质数(1)确保答案正确性:1.找对答案集合--->(1,100)2.答案成立的条件--->最大的质数(2)提高找答案的效率:1.缩小答案枚举范围(50-100)2.选择合适的枚举顺序--->逆序*/(3)例题:P1003[
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- 余数定理问题和余数类问题的解法
wangychf
python抽象代数
一、引言Python里面有一个重要的求模运算符号“%”,作为一个小白,实验了好多次求模的运算,发现这个算法不同于一般的四则运算,其运算效率简直可以用神奇来形容。例如以当今知道的最大质数——梅森素数为例,进行求模计算,速度快得惊人。当前知道的最大的梅森素数是第51个梅森素数,也是迄今为止知道的最大的素数。它的表示为:2^82589933–1,如果用十进制打开,这个数有24862048位,是2018年
- 牛客周赛 Round 59(思维、构造、数论)
mldl_
数据结构与算法算法数论逆序数构造对角线处理范德蒙恒等式
文章目录牛客周赛Round59(思维、构造、数论)A.TDB.你好,这里是牛客竞赛C.逆序数(思维)D.构造mex(构造)E.小红的X型矩阵F.小红的数组回文值(数论、范德蒙恒等式)牛客周赛Round59(思维、构造、数论)E题,对于对角线的处理,常用。F题,范德蒙恒等式推论的应用。A.TD简单数学题。#includeusingnamespacestd;intmain(){doublen,m;ci
- 洛谷P4317 花神的数论题题解
cwplh
题解算法图论
题目传送门本体接主要是对小粉兔大佬的题解的进一步解释。题目中让我们求∏i=1Nsum(i)\prod_{i=1}^N\operatorname{sum}(i)∏i=1Nsum(i),很明显不能直接暴力枚举求解,因此我们稍微归个类:把sum(i)\operatorname{sum}(i)sum(i)值相同的iii放在一起,假设sum(i)\operatorname{sum}(i)sum(i)值
- 运用逆元优化组合计算#数论
ysa051030
java算法数据结构
数论基础知识和模板-CSDN博客问题分析题目要求统计满足特定条件的排列数目。关键在于:从给定的数组中选择两个数作为n和m剩余的数必须能够组成n个m或m个n的结构计算所有可能的有效排列数目完整#includeusingnamespacestd;typedeflonglongLL;constLLMOD=1e9+7;//快速幂计算a^b%MODLLqpow(LLa,LLb){LLres=1;while(
- 自然数是否包含0
二分掌柜的
数学物理自然数
自然数是否包含0flyfish自然数是否包含0,本质是数学定义随学科需求演变的结果,数论继承了“从1计数”的历史传统,而集合论与逻辑为追求公理化完备性将0纳入。视角自然数包含0吗?核心理由数论/计数否(从1开始)符合“物体个数”的直观意义,避免0在素数分解、数论函数中引发逻辑例外。集合论/逻辑是(从0开始)空集基数对应0,通过集合后继构造自然数,满足公理化体系的完备性。数论与早期教材:自然数从1开
- 算法-基础算法-枚举算法(Python)
总裁余(余登武)
算法与数据结构算法leetcode
文章目录前言解题思路题目1两数之和2计数质数前言 枚举算法(EnumerationAlgorithm):也称为穷举算法,指的是按照问题本身的性质,一一列举出该问题所有可能的解,并在逐一列举的过程中,将它们逐一与目标状态进行比较以得出满足问题要求的解。在列举的过程中,既不能遗漏也不能重复。 枚举算法的核心思想是:通过列举问题的所有状态,将它们逐一与目标状态进行比较,从而得到满足条件的解。 由于
- 【网络安全】网络安全中的离散数学
flyair_China
安全架构
一、离散数学核心知识点与网络安全映射1.数论(NumberTheory)知识点安全应用场景实例说明质因数分解RSA公钥加密大整数分解难题(2048位密钥需数万年破解)模运算Diffie-Hellman密钥交换利用(gamodp)实现安全协商欧拉定理RSA加密/解密me*d≡m(modn)保障解密还原中国剩余定理高效解密优化RSA-CRT加速解密运算达70%2.代数结构(AlgebraicStruc
- 算法竞赛>力扣>周赛 | weekly-contest-455
字节幺零二四
算法竞赛算法leetcode职场和发展
原文链接:算法竞赛>力扣>周赛|weekly-contest-4553591.检查元素频次是否为质数解题思路统计每个元素出现的次数,判断各次数是否为质数。由于次数&nums){unordered_mapmp;for(intv:nums)mp[v]++;for(auto[k,v]:mp)if(isPrime(v))returntrue;returnfalse;}时间复杂度O(n2)O(n^2)O(n
- 数学中的代数数论与代数几何
AI天才研究院
计算AI大模型应用入门实战与进阶大数据人工智能语言模型AILLMJavaPython架构设计AgentRPA计算AI大模型应用
1.背景介绍在数学的众多分支中,代数数论和代数几何是两个极其重要的领域。代数数论,顾名思义,是研究数论问题的代数方法,主要研究整数、有理数、代数数等的性质。而代数几何则是研究零点集的代数方法,主要研究多项式方程和代数方程组的解的几何性质。这两个领域虽然看似独立,但实际上有着深厚的内在联系,它们的交叉研究已经产生了许多深远的理论和应用。2.核心概念与联系2.1代数数论代数数论的核心概念是代数数,即满
- JAVA基础
灵静志远
位运算加载Date字符串池覆盖
一、类的初始化顺序
1 (静态变量,静态代码块)-->(变量,初始化块)--> 构造器
同一括号里的,根据它们在程序中的顺序来决定。上面所述是同一类中。如果是继承的情况,那就在父类到子类交替初始化。
二、String
1 String a = "abc";
JAVA虚拟机首先在字符串池中查找是否已经存在了值为"abc"的对象,根
- keepalived实现redis主从高可用
bylijinnan
redis
方案说明
两台机器(称为A和B),以统一的VIP对外提供服务
1.正常情况下,A和B都启动,B会把A的数据同步过来(B is slave of A)
2.当A挂了后,VIP漂移到B;B的keepalived 通知redis 执行:slaveof no one,由B提供服务
3.当A起来后,VIP不切换,仍在B上面;而A的keepalived 通知redis 执行slaveof B,开始
- java文件操作大全
0624chenhong
java
最近在博客园看到一篇比较全面的文件操作文章,转过来留着。
http://www.cnblogs.com/zhuocheng/archive/2011/12/12/2285290.html
转自http://blog.sina.com.cn/s/blog_4a9f789a0100ik3p.html
一.获得控制台用户输入的信息
&nbs
- android学习任务
不懂事的小屁孩
工作
任务
完成情况 搞清楚带箭头的pupupwindows和不带的使用 已完成 熟练使用pupupwindows和alertdialog,并搞清楚两者的区别 已完成 熟练使用android的线程handler,并敲示例代码 进行中 了解游戏2048的流程,并完成其代码工作 进行中-差几个actionbar 研究一下android的动画效果,写一个实例 已完成 复习fragem
- zoom.js
换个号韩国红果果
oom
它的基于bootstrap 的
https://raw.github.com/twbs/bootstrap/master/js/transition.js transition.js模块引用顺序
<link rel="stylesheet" href="style/zoom.css">
<script src=&q
- 详解Oracle云操作系统Solaris 11.2
蓝儿唯美
Solaris
当Oracle发布Solaris 11时,它将自己的操作系统称为第一个面向云的操作系统。Oracle在发布Solaris 11.2时继续它以云为中心的基调。但是,这些说法没有告诉我们为什么Solaris是配得上云的。幸好,我们不需要等太久。Solaris11.2有4个重要的技术可以在一个有效的云实现中发挥重要作用:OpenStack、内核域、统一存档(UA)和弹性虚拟交换(EVS)。
- spring学习——springmvc(一)
a-john
springMVC
Spring MVC基于模型-视图-控制器(Model-View-Controller,MVC)实现,能够帮助我们构建像Spring框架那样灵活和松耦合的Web应用程序。
1,跟踪Spring MVC的请求
请求的第一站是Spring的DispatcherServlet。与大多数基于Java的Web框架一样,Spring MVC所有的请求都会通过一个前端控制器Servlet。前
- hdu4342 History repeat itself-------多校联合五
aijuans
数论
水题就不多说什么了。
#include<iostream>#include<cstdlib>#include<stdio.h>#define ll __int64using namespace std;int main(){ int t; ll n; scanf("%d",&t); while(t--)
- EJB和javabean的区别
asia007
beanejb
EJB不是一般的JavaBean,EJB是企业级JavaBean,EJB一共分为3种,实体Bean,消息Bean,会话Bean,书写EJB是需要遵循一定的规范的,具体规范你可以参考相关的资料.另外,要运行EJB,你需要相应的EJB容器,比如Weblogic,Jboss等,而JavaBean不需要,只需要安装Tomcat就可以了
1.EJB用于服务端应用开发, 而JavaBeans
- Struts的action和Result总结
百合不是茶
strutsAction配置Result配置
一:Action的配置详解:
下面是一个Struts中一个空的Struts.xml的配置文件
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
&quo
- 如何带好自已的团队
bijian1013
项目管理团队管理团队
在网上看到博客"
怎么才能让团队成员好好干活"的评论,觉得写的比较好。 原文如下: 我做团队管理有几年了吧,我和你分享一下我认为带好团队的几点:
1.诚信
对团队内成员,无论是技术研究、交流、问题探讨,要尽可能的保持一种诚信的态度,用心去做好,你的团队会感觉得到。 2.努力提
- Java代码混淆工具
sunjing
ProGuard
Open Source Obfuscators
ProGuard
http://java-source.net/open-source/obfuscators/proguardProGuard is a free Java class file shrinker and obfuscator. It can detect and remove unused classes, fields, m
- 【Redis三】基于Redis sentinel的自动failover主从复制
bit1129
redis
在第二篇中使用2.8.17搭建了主从复制,但是它存在Master单点问题,为了解决这个问题,Redis从2.6开始引入sentinel,用于监控和管理Redis的主从复制环境,进行自动failover,即Master挂了后,sentinel自动从从服务器选出一个Master使主从复制集群仍然可以工作,如果Master醒来再次加入集群,只能以从服务器的形式工作。
什么是Sentine
- 使用代理实现Hibernate Dao层自动事务
白糖_
DAOspringAOP框架Hibernate
都说spring利用AOP实现自动事务处理机制非常好,但在只有hibernate这个框架情况下,我们开启session、管理事务就往往很麻烦。
public void save(Object obj){
Session session = this.getSession();
Transaction tran = session.beginTransaction();
try
- maven3实战读书笔记
braveCS
maven3
Maven简介
是什么?
Is a software project management and comprehension tool.项目管理工具
是基于POM概念(工程对象模型)
[设计重复、编码重复、文档重复、构建重复,maven最大化消除了构建的重复]
[与XP:简单、交流与反馈;测试驱动开发、十分钟构建、持续集成、富有信息的工作区]
功能:
- 编程之美-子数组的最大乘积
bylijinnan
编程之美
public class MaxProduct {
/**
* 编程之美 子数组的最大乘积
* 题目: 给定一个长度为N的整数数组,只允许使用乘法,不能用除法,计算任意N-1个数的组合中乘积中最大的一组,并写出算法的时间复杂度。
* 以下程序对应书上两种方法,求得“乘积中最大的一组”的乘积——都是有溢出的可能的。
* 但按题目的意思,是要求得这个子数组,而不
- 读书笔记-2
chengxuyuancsdn
读书笔记
1、反射
2、oracle年-月-日 时-分-秒
3、oracle创建有参、无参函数
4、oracle行转列
5、Struts2拦截器
6、Filter过滤器(web.xml)
1、反射
(1)检查类的结构
在java.lang.reflect包里有3个类Field,Method,Constructor分别用于描述类的域、方法和构造器。
2、oracle年月日时分秒
s
- [求学与房地产]慎重选择IT培训学校
comsci
it
关于培训学校的教学和教师的问题,我们就不讨论了,我主要关心的是这个问题
培训学校的教学楼和宿舍的环境和稳定性问题
我们大家都知道,房子是一个比较昂贵的东西,特别是那种能够当教室的房子...
&nb
- RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系
daizj
oraclermanfilespersetPARALLELISM
RMAN配置中通道(CHANNEL)相关参数 PARALLELISM 、FILESPERSET的关系 转
PARALLELISM ---
我们还可以通过parallelism参数来指定同时"自动"创建多少个通道:
RMAN > configure device type disk parallelism 3 ;
表示启动三个通道,可以加快备份恢复的速度。
- 简单排序:冒泡排序
dieslrae
冒泡排序
public void bubbleSort(int[] array){
for(int i=1;i<array.length;i++){
for(int k=0;k<array.length-i;k++){
if(array[k] > array[k+1]){
- 初二上学期难记单词三
dcj3sjt126com
sciet
concert 音乐会
tonight 今晚
famous 有名的;著名的
song 歌曲
thousand 千
accident 事故;灾难
careless 粗心的,大意的
break 折断;断裂;破碎
heart 心(脏)
happen 偶尔发生,碰巧
tourist 旅游者;观光者
science (自然)科学
marry 结婚
subject 题目;
- I.安装Memcahce 1. 安装依赖包libevent Memcache需要安装libevent,所以安装前可能需要执行 Shell代码 收藏代码
dcj3sjt126com
redis
wget http://download.redis.io/redis-stable.tar.gz
tar xvzf redis-stable.tar.gz
cd redis-stable
make
前面3步应该没有问题,主要的问题是执行make的时候,出现了异常。
异常一:
make[2]: cc: Command not found
异常原因:没有安装g
- 并发容器
shuizhaosi888
并发容器
通过并发容器来改善同步容器的性能,同步容器将所有对容器状态的访问都串行化,来实现线程安全,这种方式严重降低并发性,当多个线程访问时,吞吐量严重降低。
并发容器ConcurrentHashMap
替代同步基于散列的Map,通过Lock控制。
&nb
- Spring Security(12)——Remember-Me功能
234390216
Spring SecurityRemember Me记住我
Remember-Me功能
目录
1.1 概述
1.2 基于简单加密token的方法
1.3 基于持久化token的方法
1.4 Remember-Me相关接口和实现
- 位运算
焦志广
位运算
一、位运算符C语言提供了六种位运算符:
& 按位与
| 按位或
^ 按位异或
~ 取反
<< 左移
>> 右移
1. 按位与运算 按位与运算符"&"是双目运算符。其功能是参与运算的两数各对应的二进位相与。只有对应的两个二进位均为1时,结果位才为1 ,否则为0。参与运算的数以补码方式出现。
例如:9&am
- nodejs 数据库连接 mongodb mysql
liguangsong
mongodbmysqlnode数据库连接
1.mysql 连接
package.json中dependencies加入
"mysql":"~2.7.0"
执行 npm install
在config 下创建文件 database.js
- java动态编译
olive6615
javaHotSpotjvm动态编译
在HotSpot虚拟机中,有两个技术是至关重要的,即动态编译(Dynamic compilation)和Profiling。
HotSpot是如何动态编译Javad的bytecode呢?Java bytecode是以解释方式被load到虚拟机的。HotSpot里有一个运行监视器,即Profile Monitor,专门监视
- Storm0.9.5的集群部署配置优化
roadrunners
优化storm.yaml
nimbus结点配置(storm.yaml)信息:
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional inf
- 101个MySQL 的调节和优化的提示
tomcat_oracle
mysql
1. 拥有足够的物理内存来把整个InnoDB文件加载到内存中——在内存中访问文件时的速度要比在硬盘中访问时快的多。 2. 不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢。 3. 使用电池供电的RAM(注:RAM即随机存储器)。 4. 使用高级的RAID(注:Redundant Arrays of Inexpensive Disks,即磁盘阵列
- zoj 3829 Known Notation(贪心)
阿尔萨斯
ZOJ
题目链接:zoj 3829 Known Notation
题目大意:给定一个不完整的后缀表达式,要求有2种不同操作,用尽量少的操作使得表达式完整。
解题思路:贪心,数字的个数要要保证比∗的个数多1,不够的话优先补在开头是最优的。然后遍历一遍字符串,碰到数字+1,碰到∗-1,保证数字的个数大于等1,如果不够减的话,可以和最后面的一个数字交换位置(用栈维护十分方便),因为添加和交换代价都是1