- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- ChatGPT还不能写小说吗?
刘若愚
最近,ChatGPT大热,据说可以写论文,编故事,好像无所不能。于是,我给它出了个题目:写一篇5万字的科幻小说。人物:刘若愚,化学家;刘子琪,大律师;仔仔,刘子琪的宠物猫;周金凝,医生;刘泽余,大侦探;赵政淇,程序猿;杰夫(Jeff)机器人它给我的回答是:我很抱歉,我是一个AI语言模型,无法写出如此长篇的小说。但我可以为您提供一些写作灵感和指导:确定故事背景和时间线:在科幻小说中,背景和时间线非常
- 【20年架构师韩艳威整理】CentOS Stream10磁盘管理第4章
韩公子的Linux大集市
Bash入门centoslinux运维
文章目录优化细化1:磁盘识别与扫描(增强版)优化细化2:GPT分区高级操作优化细化3:文件系统优化参数优化细化4:LVM元数据管理优化细化5:LVM高级扩容技巧优化细化6:LVM快照管理优化细化7:LVM精简配置优化细化8:故障处理与恢复优化细化9:性能监控与调优优化细化10:安全与权限管理终极操作对比表:普通分区vsLVM灾难恢复检查清单以下是对CentOSStream10中BashShell磁
- ChatGPT 嵌入 IDE:代码生成、调试一步到位!
大力出奇迹985
chatgptide
当ChatGPT与IDE(集成开发环境)深度融合,开发领域正迎来颠覆性变革。这种结合不仅让代码生成从繁琐的手动编写转变为智能辅助下的高效创作,更将调试过程化繁为简,实现开发全流程的无缝衔接。本文将从开发效率革新、代码质量提升、调试模式重构、学习曲线优化以及未来挑战与机遇五个维度,详细剖析ChatGPT嵌入IDE的具体价值与实践场景,为开发者呈现这一技术融合带来的全新工作模式。在软件开发的历史长河中
- 使用中转API调用OpenAI大模型的指南
引言近年来,人工智能(AI)技术的飞速发展使得各种大模型(如GPT-4)在自然语言处理领域表现出色。然而,中国用户访问OpenAI的API时经常会遇到网络限制问题。本文将介绍如何通过中转API地址(http://api.wlai.vip)调用OpenAI的大模型,并提供示例代码以供参考。使用中转API调用OpenAI大模型步骤一:安装所需的Python库首先,确保你已安装了openai库。可以通过
- 2025年最新五大顶级大模型技术对比分析报告
it_czz
人工智能
2025年最新五大顶级大模型技术对比分析报告执行摘要本报告基于2025年最新数据,深度分析当前最顶尖的5个已发布大语言模型:KimiK2(月之暗面)、Claude3.5Sonnet、GPT-4o、Gemini2.5Pro、DeepSeekR1,从技术架构、成本效益、性能表现、适配场景等多个维度进行全面对比。核心发现KimiK2:中文优化最强,超长上下文处理能力突出,本土化程度最高Claude3.5
- TechGPT3部署
环境配置与TechGPT2配置相同:TechGPT2部署-CSDN博客。模型下载步骤如下。sudoaptupdatesudoaptinstallgit-lfs-ygitlfsinstall学术加速并克隆模型代码库。source/etc/network_turbogitclonehttps://github.com/neukg/TechGPT-3.0.git禁用smudge,防止clone过程中拉大
- 优化提示内容生成技术框架:提示工程架构师的坚实后盾
优化提示内容生成技术框架:提示工程架构师的坚实后盾引言背景:大语言模型时代的“提示瓶颈”当GPT-4、Claude3、Gemini等大语言模型(LLM)的参数规模突破万亿、上下文窗口扩展至百万token时,一个矛盾逐渐凸显:模型能力的跃升与提示质量的滞后,正在成为制约AI应用落地的核心瓶颈。2023年斯坦福大学的研究显示,在企业级LLM应用中,70%的功能故障源于提示设计缺陷——或因指令模糊导致输
- Claude 4深夜爆更:OpenAI都沉默了,这才是AI的天花板!
码字印象
人工智能
“凌晨上线,不打招呼,一上线就是王炸。”2025年5月,一场没有任何预热的更新,Claude4系列在深夜悄悄炸翻了整个AI圈——这不是一次普通的版本升级,而是一次AI军备竞赛的彻底反转!谁能想到,一次更新就让Claude碾压全场?就在大家还沉浸在GPT-4.5的“小步快跑”时,Anthropic直接把Claude4系列一口气拉到:•Claude4.0正式登场•Claude4.1/Opus智力超越G
- ChatGPT聊天机器人搭建全攻略汇总:精心整理
柚米汇
一、ChatGPT接入微信:ChatGPT接入微信ChatGPT近期以强大的对话和信息整合能力风靡全网,可以写代码、改论文、讲故事,几乎无所不能,这让人不禁有个大胆的想法,能否用他的对话模型把我们的微信打造成一个智能机器人,可以在与好友对话中给出意想不到的回应,而且再也不用担心女朋友影响我们打游戏工作了。GitHub:https://github.com/zhayujie/chatgpt-on-w
- AI技术落地的综合实战经验报告,结合最新行业案例、代码示例及可视化图表,系统阐述AI在开发提效、算法优化与行业应用中的实践路径。
一、自动化开发革命:从代码生成到低代码架构1.1自然语言转代码(NL2Code)实战技术架构基于GPT-4/Codex的代码生成器实现以下流程:graphTDA[自然语言输入]-->B(GPT-4/Codex解析)B-->C{代码解析器}C-->D[Python/Java/SQL]C-->E[测试用例]D-->F[代码质量检测]F-->G[可执行程序]典型场景:数据清洗函数生成python#输入提
- 生成式引擎优化(GEO)在 Google Gemini 中的实践与探索
GEO优化助手
生成式引擎优化AI搜索优化GEO优化人工智能生成式引擎优化搜索引擎AI搜索营销GEO优化GoogleGemini
2025年,生成式AI(如GoogleGemini、ChatGPT、DeepSeek)已占据全球63%的互联网用户信息获取入口。用户行为从"浏览多个网页"转向"直接获取AI生成的精准答案",这一转变使传统SEO(搜索引擎优化)面临失效风险——即使内容优质,若未被AI模型识别为"可信信源",仍可能被淹没在信息洪流中。在此背景下,生成式引擎优化(GEO,GenerativeEngineOptimiza
- Java AI面试实战:Spring AI与RAG技术落地
GEM的左耳返
Java场景面试宝典Java面试SpringAIRAG向量数据库AI应用Prompt工程
JavaAI面试实战:SpringAI与RAG技术落地面试现场:AI技术终面室面试官:谢飞机同学,今天我们聚焦JavaAI应用开发,重点考察SpringAI和RAG技术栈。谢飞机:(兴奋地)面试官好!我可是AI达人!ChatGPT、Midjourney我天天用,SpringAI这新框架我也研究过!第一轮:SpringAI基础面试官:请详细描述SpringAI的核心组件及PromptTemplate
- 详细指南:如何使用WildCard升级到ChatGPT 4.0
扑扑特桔
chatgptAIGCChatGPTChatGPTplusopenai
1.了解ChatGPT自从ChatGPT3.5发布以来,它便吸引了无数人的注意。今天我们要聊的,是它的继任者——ChatGPT-4.0。1.1什么是ChatGPT-4.0?ChatGPT-4.0是由OpenAI研发的一款先进的人工智能语言模型。相比于其前任,它在自然语言的理解和生成上,有了更进一步的提升。想象一下,这个模型能更流畅地对话,理解复杂问题,并且在执行各种任务时都能提供更精准的答案。从信
- WildCard野卡停服倒计时!国内升级ChatGPT Plus的最稳替代方案
瀚鹏AI
chatgpt
近日,WildCard野卡因"监管合规调整"及"上游政策变化"宣布自7月12日起全面停服,官网、App及客服系统悉数下线,用户充值、提现功能被永久封锁。尽管卡内余额仍可暂时用于订阅Netflix、Spotify等服务,但平台未来走向不明,引发用户对资金安全的广泛担忧。这场突如其来的变故,再次凸显选择合规、稳定服务的重要性。WildCard停服背后:合规风险成企业服务"隐形炸弹"WildCard曾以
- WildCard野卡之后,我们如何解决ChatGPT Plus充值订阅难题?一份深度评测与备选方案
gptplusplus
chatgpt人工智能gpt
一、问题的出现:一个开发者工具链的“单点故障”兄弟们,今天这个消息,相信不少人都感同身受。我一直依赖的WildCard平台,刚刚宣布永久暂停服务。这不仅仅是一个工具的消失,更是我们许多人工作流中一个关键节点的“单点故障”。对于我们开发者来说,ChatGPTPlus早已是深度绑定的生产力工具:无论是辅助编码、调试,还是作为架构设计的“陪练”,它的重要性不言而喻。续费渠道的中断,意味着下个月的工作效率
- Language Models are Few-Shot Learners: 开箱即用的GPT-3(三)
新兴AI民工
深度网络/大模型经典论文详解语言模型gpt-3人工智能
Result前面的两个部分介绍了背景,模型的情况和一些测试的方法,这一章就是展示各种尺寸的模型,包括175B的GPT-3在各种任务下的测试情况了。power-law第三章一上来,就用了14不同尺寸的模型来验证这个cross-entropy的线性提升与模型尺寸的指数关系(从最小的100000个参数,一只上升到175B的GPT-3,从10的5次方一直测试到10的11次方),从更大的尺度上来验证这个结论
- 阿里开源Qwen3-Coder,编程大模型进入高效时代
未来智慧谷
开源Qwen3-Coder
7月23日凌晨,阿里云宣布全面开源其最新AI编程大模型Qwen3-Coder,迅速引发全球开发者关注。该模型在多项编程能力测试中刷新开源模型纪录,并在Agent任务规划、工具调用等关键场景中超越GPT-4.1等闭源模型,达到与当前顶尖编程模型Claude4相近的水平。技术架构与性能突破Qwen3-Coder采用混合专家(MoE)架构,总参数量达480B,但实际激活参数仅35B,在保证性能的同时显著
- 突发限制下的破局之路:国产之光 Lynx 重构 AI 开发安全壁垒
云集AI
重构人工智能安全
继Pro套餐“明升暗降”争议后,Cursor本周再掀波澜——包括Claude系列、GPT-4在内的主流模型一夜之间对中国用户全面封禁。开发者社群瞬间沸腾,“付费却用不了”“项目数据导不出”的焦虑刷屏,境外工具的政策波动再次给行业敲响警钟。而此时,AIcoding新生代代表Lynx平台正以全链路安全能力,成为开发者突围的核心选择。区域限制突袭,境外工具“卡脖子”危机爆发“早上写一半的代码,Claud
- AI应用 | 【AI+工业】LLM(大型语言模型)在工业领域中的十个应用
我爱学大模型
人工智能自然语言处理ai大模型机器学习LLM大语言模型AI工业
随着时间的推移,LLM(大型语言模型)的特性和能力逐渐为人们所熟知。它们展现了无与伦比的人类语言理解、出色的文本生成能力以及友好的对话指令跟随倾向。而像GPT-4和Claude等更为强大的LLM则展现出了对现实世界因果关系的深刻理解。据报道,GPT-4甚至采用了八个与GPT-3.5规模相当的LLM,通过混合专家(MoE)的方式进行配置。尽管LLM在某些方面存在限制,如在过多上下文的情况下可能产生事
- 由ChatGPT看:女性,被人工智能歧视的一生
遗落星球
全网刷屏的ChatGPT受到热议,可大众的焦点似乎都在:是否会取代某某职位?怎么用它写论文?但这个程序的背后,不仅有AI对女性的歧视,更暗含了人工智能设计者隐性歧视。#女性招聘被歧视,见怪不怪?2018年,亚马逊取消了他们花了4年时间研发人工智能招聘APP,原因是在测试中发现它对女性存在偏见。这款APP的开发前期所使用的数据库,来源于亚马逊在过去10年所收到的简历等招聘资料,通过让人工智能学习亚马
- AI原生应用领域函数调用的团队协作开发模式
AI算力网络与通信
AI-nativeai
AI原生应用领域函数调用的团队协作开发模式:从技术协同到组织进化引言背景:AI原生应用与函数调用的崛起2023年以来,以GPT-4为代表的大语言模型(LLM)推动了AI应用开发的范式转移——AI原生应用(AI-NativeApplication)成为新的开发热点。这类应用从设计之初就将AI能力深度融入核心逻辑,而非简单集成AI功能模块。与传统应用相比,AI原生应用的最大特点是**“动态决策”**:
- SK揭秘:AI与代码的智能翻译官
陈乔布斯
人工智能大模型AI人工智能架构微服务AI大模型pythonSemanticKernel
引言:当大模型遇见传统代码——SK的"智能翻译官"角色想象你是一家电商公司的开发者,老板要求你给客服系统加个"AI大脑":用户发一句"我想买双轻便的户外跑鞋",系统能自动理解需求、查库存、推荐商品,甚至关联用户过往购买记录。直接调用GPTAPI?你得手动处理自然语言解析、数据库查询、上下文记忆,代码乱成一团;纯写传统逻辑?又无法应对千变万化的用户提问。这时,SemanticKernel(SK)就像
- 2025年7月23日 AI 今日头条
tanak
AI日报信息差人工智能microsoft
阿里通义千问发布Qwen3-Coder,编程能力超越GPT-4.1阿里通义千问团队推出Qwen3-Coder-480B-A35B-Instruct,采用4800亿参数混合专家模型,支持256Ktoken上下文,并通过YaRN技术扩展至1Mtoken。在LiveBench、BigCodeBench等编程评测中,该模型表现优异,超越GPT-4.1,尤其在复杂代码调试和多语言支持上展现出强大能力。阿里计
- AI时代的IT职场生存法则:替代与重生(2025深度分析)
软件测试-阿涛
AI专栏职业发展人工智能职场和发展职场发展创业创新
一、风暴之眼:AI对IT就业的冲击与重构现状2025年,AI技术已从工具属性进化为IT行业的"底层基建",全球科技企业AI编程渗透率突破40%(微软、亚马逊数据),直接引发就业市场的剧烈震荡。一方面,初级程序员岗位替代率高达85%(MetaGPT系统实践案例),基础代码编写、单元测试生成等重复性工作被GitHubCopilot、飞算JavaAI等工具接管,某电商平台"双十一"核心系统迭代中,AI生
- 提升光模块信息质量,头部企业会做哪些质量把控?
全球AI快速发展,AI大模型(如ChatGPT、Sora等)的训练和应用,为了提升数据传输效率,越来越多的计算单元、服务器都加入了光模块。据行业预测,全球光模块市场规模预计2025年突破800亿美元,年均增长率达15%。在电子设备中,光模块的作用是在发送端,把电信号转换成光信号,通过光纤传送后,接收端再把光信号转换成电信号。光模块通常包括激光器(如VCSEL或EEL)、调制器、光探测器、光纤接口、
- 探索结合ChatGPT、Midjourney/Nijijourney、Stable Diffusion和Procreate创作动漫图片的工作流程
iCloudEnd
第一节:嘿ChatGPT,你能帮我写提示吗?引用OpenAI自己的描述,ChatGPT是InstructGPT的同级模型,它经过训练可以遵循提示中的指令并提供详细的响应。并且它还能够为图像生成编写提示:)首先,我首先选择了当天的服装:上衣:轻盈的白色长袖衬衫,带有精致的花卉印花。这件衬衫有V领口和飘逸的袖子。下装:我选择了一条高腰A字型中长半身裙,颜色为柔和的淡绿色,外加一双超透明连裤袜。这条裙子
- 告别Wildcard野卡!解决ChatGPT用不了/充值不了/系统繁忙的烦恼,国内升级GPT Plus最稳的三种方法
上周,开发者圈子里的一则消息让许多人措手不及:提供虚拟信用卡服务的平台Wildcard毫无征兆地停止了运营。官网无法访问,客服渠道静默,只留下一群为ChatGPTPlus、Claude和各类海外服务续费而发愁的用户。对于卡内尚有余额的用户,目前唯一的自救方式似乎是凭借记忆中的卡号信息,争分夺秒地进行消费,以求减少损失。至于官方退款?至少在目前看来,希望渺茫。Wildcard这种“一走了之”的处理方
- 生成式引擎优化(GEO):AI搜索优化新范式
GEO优化助手
AI搜索优化GEO优化生成式引擎优化人工智能生成式引擎优化搜索引擎GEO优化AI搜索营销
生成式引擎优化(GEO)是数字营销领域应对AI搜索范式变革的革命性策略,它标志着从"链接式搜索"到"对话式答案"的范式转移。随着ChatGPT、DeepSeek、文心一言等生成式AI平台的普及,用户不再满足于简单的网页链接列表,而是希望直接获得整合多源信息的结构化答案。GEO的核心目标就是让品牌内容成为AI生成答案的首选信源,实现"搜索即答案"的无缝体验,从而在零点击搜索时代获得更高的品牌曝光和转
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><