- 编程算法:技术创新的引擎与业务增长的核心驱动力
在数字经济时代,算法已成为推动技术创新与业务增长的隐形引擎。从存内计算突破冯·诺依曼瓶颈,到动态规划优化万亿级金融交易,编程算法正在重塑产业竞争格局。一、存内计算:突破冯·诺依曼瓶颈的算法革命1.1存内计算的基本原理传统计算架构中90%的能耗消耗在数据搬运上。存内计算(Processing-in-Memory)通过直接在存储单元执行计算,实现能效10-100倍提升:#传统计算vs存内计算能耗模型i
- 算法刷题-动态规划之背包问题
1.背包问题之01(4.30)题目描述小明有一个容量为VV的背包。这天他去商场购物,商场一共有NN件物品,第ii件物品的体积为wiwi,价值为vivi。小明想知道在购买的物品总体积不超过VV的情况下所能获得的最大价值为多少,请你帮他算算。输入描述输入第11行包含两个正整数N,VN,V,表示商场物品的数量和小明的背包容量。第2∼N+12∼N+1行包含22个正整数w,vw,v,表示物品的体积和价值。1
- 【春招笔试真题】饿了么2025.03.07-算法岗真题
春秋招笔试突围
最新互联网春秋招试题合集算法代理模式
第一题:数据特征最大化1️⃣:找出数组中的最大元素,返回其平方难度:简单这是一道技巧性题目,乍看需要枚举所有子数组计算异或和和最大公约数。但通过分析可以发现,对任意单元素子数组,其异或值和最大公约数都是元素本身,因此乘积是元素的平方。可以证明,最大元素的平方就是整个问题的最优解。时间复杂度O(n)。第二题:同质接龙字符串1️⃣:记忆化搜索+动态规划2️⃣:使用状态编码降低存储复杂度难度:中等这道题
- 【华为机试】121. 买卖股票的最佳时机
不爱熬夜的Coder
算法华为机试golang华为算法华为od深度优先数据结构
文章目录121.买卖股票的最佳时机描述示例1示例2示例3提示解题思路方法一:一次遍历(推荐)方法二:暴力解法方法三:动态规划方法四:分治法代码实现复杂度分析测试用例完整题解代码121.买卖股票的最佳时机描述给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 强化学习入门三(SARSA)
第六五签
算法模型算法人工智能
SARSA算法详解SARSA是强化学习中另一种经典的时序差分(TD)学习算法,与Q-Learning同属无模型(model-free)算法,但在更新策略上有显著差异。SARSA的名称来源于其更新公式中涉及的五个元素:状态(State)、动作(Action)、奖励(Reward)、下一状态(NextState)、下一动作(NextAction),即(S,A,R,S’,A’)。SARSA与Q-Lear
- CIRL:因果启发的表征学习框架——从域泛化到奖励分解的因果革命
大千AI助手
人工智能Python#OTHER学习深度学习人工智能机器学习表征学习因果推断域泛化
CIRL(因果启发的表征学习)是由国内顶尖AI研究团队于CVPR2022提出的创新框架,最初用于解决域泛化(DomainGeneralization,DG)问题,其核心思想是通过结构因果模型(SCM)分离数据中的因果与非因果因素,构建鲁棒表征。后续研究(如GRD、Diaster算法)将其扩展至强化学习的奖励分解领域,通过因果充分性、稀疏性与正交性约束,解决延迟奖励与奖励黑客问题。原始论文发表于CV
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- 120.三角形最小路径和
HamletSunS
题解:给出一个三角形,求从顶点到最底层的路径的最小和方法:动态规划2个参数,i,j,代表从(i,j)出发直到底层的最小路径和。f(i,j)=t[i][j]+min(f[i+1][j],f[i+1][j+1])优化方案:根据dp的方程可以发现,当前元素只与下一行的同列和右侧有关系,与左侧无关。那么优化思路就是只用1行,从左开始往右更新即可。这样就可以只用一维数组dp[j]代表从某行(通过不断更新可更
- Floyd算法详解——包括解题步骤与编程
HOLD ON!
算法
Floyd算法详解——包括解题步骤与编程SweeNeil展开一、Floyd算法原理Floyd算法是一个经典的动态规划算法,它又被称为插点法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。Floyd算法是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,算法目标是寻找从点i到点j的最短路径。从任意节点i到任意节点j的最短路径不外乎2种
- 基于强化学习的工业SCR脱硝系统控制算法设计与实现
pk_xz123456
算法python人工智能python深度学习数据挖掘
基于强化学习的工业SCR脱硝系统控制算法设计与实现1.引言选择性催化还原(SCR)脱硝系统是火电厂等工业设施中用于降低氮氧化物(NOx)排放的关键环保设备。传统的PID控制方法在面对SCR系统非线性、大滞后等特性时往往表现不佳。本文将详细介绍如何利用强化学习技术设计智能控制器,实现SCR脱硝系统的优化控制。2.系统概述与问题分析2.1SCR脱硝系统工作原理SCR系统通过在催化剂作用下,向烟气中喷入
- 【无人机】基于强化学习的多无人机移动边缘计算与路径规划研究Matlab代码
Matlab科研工作室
无人机边缘计算matlab
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理
- 动态规划 (Dynamic Programming) 算法概念-JS示例
香蕉可乐荷包蛋
#动态规划算法动态规划javascript
核心概念解析动态规划是一种用于解决具有重叠子问题和最优子结构特性的复杂问题的算法设计技术。它通过将复杂问题分解为更小的子问题,并存储子问题的解来避免重复计算,从而提高效率。关键特性最优子结构:问题的最优解包含子问题的最优解重叠子问题:在递归求解过程中,相同的子问题被多次计算无后效性:某个阶段的状态一旦确定,就不会受到后续决策的影响动态规划与分治法的区别分治法:子问题不重叠,各自独立求解动态规划:子
- 动态规划 (Dynamic Programming) 算法概念-Python示例
香蕉可乐荷包蛋
#动态规划算法动态规划python
Python实例详解1.斐波那契数列#传统递归方法-效率低下O(2^n)deffibonacci_recursive(n):ifn=weights[i-1]:dp[i][w]=max(dp[i][w],dp[i-1][w-weights[i-1]]+values[i-1])returndp[n][capacity]#空间优化版本defknapsack_optimized(weights,value
- 用动态规划方法求解0-1背包问题
逢着
算法动态规划算法c++
如果你对动态规划方法求解0-1背包问题的思路不清晰,直接阅读代码并不是一个好的建议。推荐一个B站up主的视频讲解:0/1背包问题-动态规划练习地址(B站视频配套的网址)#includeusingnamespacestd;constintbagVolume=6;//背包体积constintitemNumber=4;//准备放入的物品数量constintrows=itemNumber+1;//tabl
- AI人工智能领域深度学习的机器人控制技术
AI智能架构工坊
AI人工智能与大数据应用开发AI应用开发高级指南人工智能深度学习机器人ai
AI人工智能领域深度学习的机器人控制技术:让机器人像人类一样“聪明”行动关键词:深度学习、机器人控制、强化学习、端到端控制、具身智能摘要:本文将带您走进“深度学习+机器人控制”的奇妙世界。我们会用“教机器人端咖啡”这样的生活案例,从核心概念讲到底层原理,再通过实战代码演示如何用深度学习让机器人完成复杂任务。无论您是技术小白还是开发者,都能轻松理解深度学习如何赋予机器人“思考”和“适应”能力,以及未
- 算法在前端框架中的集成
引言算法是前端开发中提升性能和用户体验的重要工具。随着Web应用复杂性的增加,现代前端框架如React、Vue和Angular提供了强大的工具集,使得将算法与框架特性(如状态管理、虚拟DOM和组件化)无缝集成成为可能。从排序算法优化列表渲染到动态规划提升复杂计算效率,算法的集成能够显著改善应用的响应速度和资源利用率。本文将探讨如何将常见算法(排序、搜索和动态规划)集成到前端框架中,重点介绍框架特性
- 第十四章、完全合作关系设定下的多智能体强化学习(MAC-A2C)
跳跳糖炒酸奶
强化学习算法强化学习人工智能python算法
0前言根据上一章的内容,已知完全合作关系下的多智能体利益一致有相同的目标,获得的奖励相同即Rt1=Rt2=Rt3R^1_t=R^2_t=R^3_tRt1=Rt2=Rt3。1完全合作关系设定下的策略学习要注意的点:状态S=[O1,O2,⋯ ,Om]S=[O^1,O^2,\cdots,O^m]S=[O1,O2,⋯,Om],所有智能体的观测之和是状态。动作A=[A1,A2,⋯ ,Am]A=[A^1,A^
- 贪心算法Day3学习心得
Morriser莫
贪心算法算法
今天继续看贪心的题目第一道:1005.K次取反后最大化的数组和-力扣(LeetCode)给定一个整数数组A,我们只能用以下方法修改该数组:我们选择某个索引i并将A[i]替换为-A[i],然后总共重复这个过程K次。(我们可以多次选择同一个索引i。)以这种方式修改数组后,返回数组可能的最大和。贪心的思路,局部最优:让绝对值大的负数变为正数,当前数值达到最大,整体最优:整个数组和达到最大。局部最优可以推
- 最短Hamilton路径
「止于纸扇」
#代码模板C++学习笔记算法数据结构
最短Hamilton路径在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。原理哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。对于一个有n个顶点的无向图G(V,E),我们可以使用一个二维数组dp[i][j]来表
- Kimi-Researcher 技术实现深度解析
李昕壑
人工智能
Kimi-Researcher是一款基于端到端自主强化学习技术构建的智能研究助手,其核心技术在于通过单一模型自主决策和执行复杂研究任务,无需预设工作流程。它具备轻量化的长时记忆机制和潜在的多模态处理能力,能够高效地进行并行搜索和灵活的工具调用,从而完成从信息搜集、分析到报告生成的全过程。1.Kimi-Researcher核心工作机制概述Kimi-Researcher作为一款专注于深度研究的Agen
- PPO:强化学习中的近端策略优化——原理、演进与大规模应用实践
大千AI助手
人工智能Python#OTHER人工智能深度学习大模型算法PPO近端策略优化优化
近端策略优化(ProximalPolicyOptimization,PPO)是由OpenAI团队于2017年提出的策略梯度强化学习算法,通过裁剪概率比目标函数约束策略更新幅度,解决了传统策略梯度方法训练不稳定、易发散的核心问题。该算法兼具信赖域策略优化(TRPO)的稳定性与一阶优化的简洁性,已成为深度强化学习(DRL)和大语言模型对齐(RLHF)的事实标准算法。本文由「大千AI助手」原创发布,专注
- 【强化学习】01
第一章:强化学习基础概念与核心要素的基石强化学习(ReinforcementLearning,RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。1.1强化学习的独特学习范式在传统的机器学习领域,监督学习
- 最长递增子序列(LIS)时间复杂度详解
高冷小伙
算法总结算法动态规划数据结构leetcode
问题描述所谓最长递增子序列,就是从一个数组中,从左至右选择若干个数,使得组成的新序列长度最长。解题思路1.转换成最长公共子序列问题待更新~~~~~2.普通动态规划(时间复杂度O(n^2))普通的动态规划思路就是先初始化len[i]为1,然后遍历下标为0~i-1的所有元素,从而对len[i]进行更新;代码如下:voidsolve2(intnum[],intl){intlen[100];memset(
- 大模型就业方向
有如下几个方向:基座模型训练工作内容:优化模型结构、数据比例,实现在各种任务上效果比较好的通用基座模型护城河:出了问题只有你能解决,给足情绪价值经验要求:必备:模型分布式框架(如deepspeed)、多机多卡训练、顶会的经验;阅读一系列LLM经典论文,例如Instruct-GPT、LORA等,从而对LLM有一个更深入、透彻的掌握。同任选:万卡集群的训练经验(包括预训练、sft、强化学习)、踩坑经验
- 动态规划:从入门到精通
本文全章节一共一万七千多字,详细介绍动态规划基础与进阶技巧,全篇以代码为主,认真读完理解,你对动态规划的理解一定会有一个质的飞跃。一、动态规划简介:动态规划(DynamicProgramming,简称DP)是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。它的核心思想是:将复杂问题分解成子问题,保存子问题的解,避免重复计算。动态规划本质上是一种用空间换时间的算法思想:时间优化:避免
- 【动态规划】背包dp
算法阿诺
动态规划动态规划算法
青春没有售价,dp速学一下。参考文章01背包在01背包问题中,每个物品只能放一次进背包。dp[i][j]dp[i][j]dp[i][j]:第i个物品,j容量状态转移公式:f[i][j]=max(f[i−1][j],f[i−1][j−w[i]]+pri[i])f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+pri[i])f[i][j]=max(f[i−1][j],f[i−1
- 【每日一题】补档 CF1875 D. Jellyfish and Mex | 动态规划 | 中等
题目内容原题链接给定一个长度为nnn的数组aaa,每次选择一个元素aia_iai删除,删除的代价为删除后剩余元素的mexmexmex,mex(a)mex(a)mex(a)是指aaa中未出现过的最小的非负数。问将数组aaa删除为空的操作的最小代价。数据范围1≤n≤50001\leqn\leq50001≤n≤50000≤ai≤1090\leqa_i\leq10^90≤ai≤109题解考虑mex(a)m
- 算法训练营day29 贪心算法③ 134. 加油站、135. 分发糖果 、860.柠檬水找零、406.根据身高重建队列
贪心算法的第三篇博客,继续脑筋风暴!134.加油站写在前面这道题规定了有解的话,必定为唯一解贪心思路直接从全局进行贪心选择,情况如下:情况一:如果gas的总和小于cost总和,那么无论从哪里出发,一定是跑不了一圈的情况二:rest[i]=gas[i]-cost[i]为一天剩下的油,i从0开始计算累加到最后一站,如果累加没有出现负数,说明从0出发,油就没有断过,那么0就是起点。情况三:如果累加的最小
- 图书推荐-对初学者有好的算法书籍《Hello算法》
_abab
图书推荐算法
关于本书Hello算法本书是开源免费的数据结构与算法入门教程,采用动画图解和可运行代码示例讲解主要内容涵盖复杂度分析、数据结构(数组/链表/栈/队列/树/图等)、算法(搜索/排序/动态规划等)适合算法初学者建立知识体系,可作为刷题工具库如何使用本书推荐结合动画图解理解重点难点,所有代码提供Java等语言版本包含在线运行功能,可通过GitHub仓库获取源码,各章节设有讨论区学习路线分三阶段:建立基础
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_