- Language Models are Few-Shot Learners: 开箱即用的GPT-3(三)
新兴AI民工
深度网络/大模型经典论文详解语言模型gpt-3人工智能
Result前面的两个部分介绍了背景,模型的情况和一些测试的方法,这一章就是展示各种尺寸的模型,包括175B的GPT-3在各种任务下的测试情况了。power-law第三章一上来,就用了14不同尺寸的模型来验证这个cross-entropy的线性提升与模型尺寸的指数关系(从最小的100000个参数,一只上升到175B的GPT-3,从10的5次方一直测试到10的11次方),从更大的尺度上来验证这个结论
- 交叉熵损失函数
onlyzzr
深度学习pytorch深度学习机器学习
importtorchimporttorch.nn.functionalasFimporttorch.nnasnnimportmathdefcross_entropyloss(y_pred,y_true):#y_pred'sshapeis[N,C]y_pred=torch.log_softmax(y_pred,dim=-1)loss=-torch.sum(y_true*y_pred,dim=-1)
- tensorflow sigmoid_cross_entropy_with_logits 函数解释及公式推导
CrazyWolf_081c
tensorflowsigmoid_cross_entropy_with_logits函数解释及公式推导tensorflow官方文档解释参考pytorch--BCELosspytorch--BCELoss解释参考定义在tensorflow/python/ops/nn_impl.py.功能:计算在给定logits和label之间的sigmoidcrossentropy。测量离散分类任务中的概率误差,
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- 什么是深度学习框架中的计算图?
杰瑞学AI
ComputerknowledgeNLP/LLMsAI/AGI深度学习人工智能pytorch
在深度学习框架中,计算图是核心的数据结构和抽象概念,它用来表示和定义深度学习模型的计算过程。我们可以把它想象成一个描述数学运算如何组合和执行的有向图。以下是计算图的关键要素和作用:节点:代表操作或变量。操作:数学运算,如加法(+)、乘法(*)、矩阵乘法(matmul)、激活函数(ReLU,sigmoid)、卷积(conv2d)、损失函数(cross_entropy)等。变量:通常是张量,即存储数据
- 深度学习相关指标工作笔记
Victor Zhong
AI框架深度学习笔记人工智能
这里写目录标题检测指标iou/Gou/Diou/CiouMSE(MeanSquaredError)(均方误差)(回归问题)交叉熵损失函数(CrossEntropyErrorFunction)(分类问题)检测指标iou/Gou/Diou/CiouIntersectionoverUnion(IoU)是目标检测里一种重要的评价值交并比令人遗憾的是IoU无法优化无重叠的bboxes如果用IoU作为loss
- 交叉熵损失和负熵似然损失(对分类器有用)
流量留
深度学习人工智能机器学习算法
1.**交叉熵损失(Cross-EntropyLoss)**-**定义**-交叉熵损失是用来衡量分类模型输出的概率分布与真实标签的概率分布之间的差异。假设对于一个分类任务,有\(C\)个类别,模型对第\(i\)个样本的输出是一个概率分布\(\mathbf{p}_i=[p_{i1},p_{i2},\dots,p_{iC}]\),其中\(p_{ic}\)表示模型预测样本属于第\(c\)类的概率。真实标
- Pyeeg模块部分功能介绍
脑电情绪识别
脑电情绪识别python神经网络深度学习pycharm
1.pyeeg简单介绍PyEEG是一个Python模块(即函数库),用于提取EEG(脑电)特征。正在添加更多功能。它包含构建用于特征提取的数据的函数,例如从给定的时间序列构建嵌入序列。它还能够将功能导出为svmlight格式,以便调用机器学习及深度学习工具。2.部分函数介绍1.pyeeg.ap_entropy(X,M,R)pyeeg.ap_entropy(X, M, R)计算时间序列X的近似熵(A
- 激活层为softmax时,CrossEntropy损失函数对激活层输入Z的梯度
Jcldcdmf
AI机器学习损失函数交叉熵softmax
∂L∂Z=y^−y\frac{\partialL}{\partialZ}=\hat{y}-y∂Z∂L=y^−y其中yyy为真实值,采用one-hot编码,y^\hat{y}y^为softmax输出的预测值证明:\textbf{证明:}证明:根据softmax公式:y^i=ezi∑j=1nezj\hat{y}_i=\frac{e^{z_i}}{\sum_{j=1}^ne^{z_j}}y^i=∑j=1
- 理解自信息和信息熵——为什么自信息这样算?
Colin_Downey
随笔信息熵机器学习概率论
一直对香农的信息熵(InformationEntropy)都没有一个非常感性的认识,今日摸鱼学习了一下这个问题。我们先来看看香农是怎么看待交流中的“信息”:“Thefundamentalproblemofcommunicationisthatofreproducingatonepointeitherexactlyorapproximatelyamessageselectedatanotherpoi
- 理解Logits、Softmax和softmax_cross_entropy_with_logits的区别
1010n111
机器学习
理解Logits、Softmax和softmax_cross_entropy_with_logits的区别技术背景在机器学习尤其是深度学习中,分类问题是一个常见的任务。在解决分类问题时,我们需要将模型的输出转换为概率分布,以便确定每个类别的可能性。同时,我们需要一个损失函数来衡量模型预测结果与真实标签之间的差异,从而进行模型的训练和优化。在TensorFlow中,logits、softmax和so
- 机器学习与深度学习21-信息论
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.信息上的概念2.相对熵是什么3.互信息是什么4.条件熵和条件互信息5.最大熵模型6.信息增益与基尼不纯度前文回顾上一篇文章链接:地址1.信息上的概念信息熵(Entropy)是信息理论中用于度量随机变量不确定性的概念。它表示了对一个随机事件发生的预测的平均困惑程度或信息量。对于一个离散型随机变量X,其信息熵H(X)定义为所有可能取值的负概率加权平均。数学上,可以使用以下公式来计算离散
- 多分类与多标签分类的损失函数
麦格芬230
自然语言处理
使用神经网络处理多分类任务时,一般采用softmax作为输出层的激活函数,使用categorical_crossentropy(多类别交叉熵损失函数)作为损失函数,输出层包含k个神经元对应k个类别。在多标签分类任务中,一般采用sigmoid作为输出层的激活函数,使用binary_crossentropy(二分类交叉熵损失函数)作为损失函数,就是将最后分类层的每个输出节点使用sigmoid激活函数激
- 强化学习的前世今生(五)— SAC算法
小于小于大橙子
算法概率论强化学习人工智能自动驾驶AI
书接前四篇强化学习的前世今生(一)强化学习的前世今生(二)强化学习的前世今生(三)—PPO算法强化学习的前世今生(四)—DDPG算法本文为大家介绍SAC算法7SAC7.1最大熵强化学习在信息论中,熵(entropy)是用来衡量一个随机变量不确定性大小的度量,对于一个随机变量XXX,其定义为H(X)=Ex∼p(x)[−logp(x)](7.1)\begin{align*}H(X)&=\mathbb
- 目标检测领域最新突破:2025年你必须掌握的5大创新方向!附教程!
学算法的程霖
目标检测人工智能计算机视觉机器学习深度学习自然语言处理大模型
目标检测是计算机视觉的核心任务之一,涉及算法学习、应用场景优化和学术创新三个关键方向。以下是系统的总结和建议:一、目标检测算法学习方向1.基础理论核心任务:定位(BoundingBox)+分类(Class)。关键概念:IoU(交并比)、NMS(非极大值抑制)、Anchor机制。损失函数:分类损失(Cross-Entropy)、回归损失(SmoothL1、GIoU)。必学经典模型:Two-Stage
- 基于Huber函数和最大相关熵的抗差滤波算法
bubiyoushang888
matlab
最大熵滤波(MaximumEntropyFiltering)常用于信号处理中的谱估计和噪声抑制,尤其适用于短数据序列的高分辨率谱分析。一、最大熵滤波算法原理核心思想:在满足已知自相关函数约束的条件下,使信号的熵最大化。数学形式:通过自回归(AR)模型对信号建模,估计模型参数(滤波器系数)。关键公式:自回归模型:x(n)=−∑k=1pap(k)x(n−k)+w(n)x(n)=-\sum_{k=1}^
- 模型蒸馏(Knowledge Distillation)
PWRJOY
编程通识模型蒸馏深度学习
知识蒸馏(KnowledgeDistillation,简称KD)是一种深度学习中的模型压缩技术,其核心思想是将大型、复杂模型(教师模型)所学到的知识迁移到较小、结构简单的模型(学生模型)中,从而在保持性能的同时,降低计算和存储成本。核心概念在传统的深度学习训练中,模型的目标是通过交叉熵损失(Cross-EntropyLoss)来学习真实标签(HardLabels)。然而,知识蒸馏引入了一种新的学习
- Docker容器网络架构深度解析与技术实践指南——基于Linux内核特性的企业级容器网络实现
庸子
dockerdocker网络架构
第1章容器网络基础架构1Linux网络命名空间实现原理1.1内核级隔离机制深度解析1.1.1进程隔离的底层实现通过clone()系统调用创建新进程时,设置CLONE_NEWNET标志位将触发内核执行以下操作:内核源码示例(linux-6.8.0/kernel/fork.c)static__latent_entropystructtask_struct*copy_process(...structk
- pytorch验算CrossEntropyLoss ,BCELoss 和 BCEWithLogitsLoss
咕噜咕噜day
pytorch相关CrossEntropyloBCELossBCEWithLogitsBCE_交叉熵_BCEWit
一.手动计算、log_softmax+nll_loss、nn.CrossEntropyLoss三种方式计算交叉熵:(classtorch.nn.CrossEntropyLoss(weight=None,size_average=None,ignore_index=-100,reduce=None,reduction=‘elementwise_mean’)功能:将输入经过softmax激活函数之后,
- 【笔记】BCEWithLogitsLoss
睡不着还睡不醒
读研日记笔记
工作原理BCEWithLogitsLoss是PyTorch中的一个损失函数,用于二分类问题。它结合了Sigmoid激活函数和二元交叉熵(BinaryCrossEntropy,BCE)损失在一个类中。这不仅简化了代码,而且通过数值稳定性优化提高了模型训练的效率和效果。使用方法importtorchimporttorch.nnasnn#假设我们有一个批次大小为32,单通道,高度和宽度分别为64的图像i
- 基于Partial Cross Entropy的弱监督语义分割实战指南
Loving_enjoy
计算机学科论文创新点深度学习机器学习人工智能
一、问题背景:弱监督学习的挑战在计算机视觉领域,语义分割任务面临最大的挑战之一是**标注成本**。以Cityscapes数据集为例,单张图像的像素级标注需要约90分钟人工操作。这催生了弱监督学习(WeaklySupervisedLearning)的研究方向,其中partialcrossentropyloss(部分交叉熵损失)成为重要的技术手段。###弱监督的常见形式1.图像级标签(Image-le
- Radar Forward-Looking Super-Resolution Imaging Algorithm of ITR-DTV Based on Renyi Entropy论文阅读
青铜锁00
论文阅读Radar论文阅读
RadarForward-LookingSuper-ResolutionImagingAlgorithmofITR-DTVBasedonRenyiEntropy1.研究目标与实际问题意义1.1研究目标1.2实际意义2.创新方法、模型与公式分析2.1方法框架2.1.1方向总变差(DTV)算子2.1.2Renyi熵正则化2.1.3加权矩阵设计2.2优化模型与求解2.3与传统方法对比3.实验设计与结果分
- 21、最大熵模型
healed萌
机器学习机器学习人工智能算法
1最大熵原理最大熵模型(maximumentropymodel,MaxEnt),是典型的分类算法,是基于最大熵原理的统计模型,广泛应用于模式识别和统计评估中。最大熵原理是概率模型学习的一个准则。最大熵原理认为,学习概率模型时,在所有可能的概率模型(分布)中,熵最大的模型是最好的模型。通常用约束条件来确定概率模型的集合,所以,最大熵原理也可以表述为在满足约束条件的模型集合中选取熵最大的模型。在信息论
- 【maxENT】最大熵模型(Maximum Entropy Model)R语言实现
感谢地心引力
数据分析r语言开发语言maxent
文章目录一、相关package介绍1.1dismo包1.2raster包1.3常见问题与解决二、代码示例先看:【maxENT】最大熵模型(MaximumEntropyModel)介绍与使用(maxENT软件)ASCII文件太大,使用R语言直接输入环境的栅格文件。一、相关package介绍1.1dismo包专门用于物种分布建模(SpeciesDistributionModeling,SDM),提供与
- 交叉熵在机器学习中的应用解析
callinglove
深度学习损失函数交叉熵
文章目录核心概念香农信息量(自信息)熵(Entropy)KL散度(Kullback-LeiblerDivergence)交叉熵在机器学习中的应用作为损失函数对于二分类(BinaryClassification):对于多分类(MulticlassClassification):多标签分类(Multi-labelClassification)其他应用场景实例手撸计算实现示例(PyTorch)注意事项直
- Seq2Seq - CrossEntropyLoss细节讨论
风筝超冷
人工智能深度学习seq2seq
在PyTorch中,损失函数CrossEntropyLoss的输入参数通常需要满足特定的形状要求。对于CrossEntropyLoss,输入参数的形状要求如下:input:模型的输出,形状为[N,C],其中:N是样本数量(或展平后的序列长度)。C是类别数量(目标词汇表的大小)。target:目标标签,形状为[N],其中每个元素是一个类别索引(整数)。在上一节的代码中:loss=loss_fn(si
- 深度学习入门(三):神经网络的学习
WhyNot?
深度学习深度学习神经网络学习
文章目录前言人类思考VS机器学习VS深度学习基础术语损失函数常用的损失函数均方误差MSE(MeanSquareError)交叉熵误差(CrossEntropyError)mini-batch学习为何要设定损失函数数值微分神经网络学习算法的实现两层神经网络的类参考资料前言机器学习的过程通常分为学习(从训练数据中自动获取权重参数的过程)和推理(利用学习到的权重参数对新的数据进行预测)两个环节。本文将主
- MSE分类时梯度消失的问题详解和交叉熵损失的梯度推导
阿正的梦工坊
MachineLearningDeepLearning分类人工智能深度学习机器学习
下面是MSE不适合分类任务的解释,包含梯度推导。以及交叉熵的梯度推导。前文请移步笔者的另一篇博客:大模型训练为什么选择交叉熵损失(Cross-EntropyLoss):均方误差(MSE)和交叉熵损失的深入对比MSE分类时梯度消失的问题详解我们深入探讨MSE(均方误差)的梯度特性,结合公式推导和分析,解释为什么在预测值接近0或1时梯度趋于0,以及这背后的含义。我会尽量保持清晰且严谨,适合高理论水平的
- 人工智能与机器学习入门:基尼系数(Gini Index)和基于熵(Entropy)
基尼系数基于熵机器学习入门
在决策树应用一文中,在构建决策分类树应用决策算法时,介绍了基尼系数(GiniIndex)和基于熵(Entropy)两种算法。本文通过实例来更加深入的介绍一下这两个算法。仍然以简单的数据为例:id喜欢颜色是否有喉结身高性别1绿否165女2蓝是170男3粉否172女4绿是175男基尼系数分别对喜欢颜色是否有喉结求基尼系数如下:喜欢的颜色id喜欢颜色性别1绿女2蓝男3粉女4绿男对于姓别女分类而言,数据如
- 知识蒸馏 vs RLHF:目标函数与收敛分析
从零开始学习人工智能
人工智能
1.知识蒸馏(KnowledgeDistillation)知识蒸馏是一种模型压缩技术,旨在将大型复杂模型(教师模型)的知识迁移到较小的模型(学生模型)中,以提高学生模型的性能。目标函数知识蒸馏的目标函数通常由两部分组成:分类损失(StudentLoss):学生模型的输出与真实标签之间的交叉熵损失,表示为:[Lclassification=CrossEntropy(y,q(1))=−∑i=1Nyil
- java工厂模式
3213213333332132
java抽象工厂
工厂模式有
1、工厂方法
2、抽象工厂方法。
下面我的实现是抽象工厂方法,
给所有具体的产品类定一个通用的接口。
package 工厂模式;
/**
* 航天飞行接口
*
* @Description
* @author FuJianyong
* 2015-7-14下午02:42:05
*/
public interface SpaceF
- nginx频率限制+python测试
ronin47
nginx 频率 python
部分内容参考:http://www.abc3210.com/2013/web_04/82.shtml
首先说一下遇到这个问题是因为网站被攻击,阿里云报警,想到要限制一下访问频率,而不是限制ip(限制ip的方案稍后给出)。nginx连接资源被吃空返回状态码是502,添加本方案限制后返回599,与正常状态码区别开。步骤如下:
- java线程和线程池的使用
dyy_gusi
ThreadPoolthreadRunnabletimer
java线程和线程池
一、创建多线程的方式
java多线程很常见,如何使用多线程,如何创建线程,java中有两种方式,第一种是让自己的类实现Runnable接口,第二种是让自己的类继承Thread类。其实Thread类自己也是实现了Runnable接口。具体使用实例如下:
1、通过实现Runnable接口方式 1 2
- Linux
171815164
linux
ubuntu kernel
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.1.2-unstable/
安卓sdk代理
mirrors.neusoft.edu.cn 80
输入法和jdk
sudo apt-get install fcitx
su
- Tomcat JDBC Connection Pool
g21121
Connection
Tomcat7 抛弃了以往的DBCP 采用了新的Tomcat Jdbc Pool 作为数据库连接组件,事实上DBCP已经被Hibernate 所抛弃,因为他存在很多问题,诸如:更新缓慢,bug较多,编译问题,代码复杂等等。
Tomcat Jdbc P
- 敲代码的一点想法
永夜-极光
java随笔感想
入门学习java编程已经半年了,一路敲代码下来,现在也才1w+行代码量,也就菜鸟水准吧,但是在整个学习过程中,我一直在想,为什么很多培训老师,网上的文章都是要我们背一些代码?比如学习Arraylist的时候,教师就让我们先参考源代码写一遍,然
- jvm指令集
程序员是怎么炼成的
jvm 指令集
转自:http://blog.csdn.net/hudashi/article/details/7062675#comments
将值推送至栈顶时 const ldc push load指令
const系列
该系列命令主要负责把简单的数值类型送到栈顶。(从常量池或者局部变量push到栈顶时均使用)
0x02 &nbs
- Oracle字符集的查看查询和Oracle字符集的设置修改
aijuans
oracle
本文主要讨论以下几个部分:如何查看查询oracle字符集、 修改设置字符集以及常见的oracle utf8字符集和oracle exp 字符集问题。
一、什么是Oracle字符集
Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系。ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据。它使数据库工具,错误消息,排序次序,日期,时间,货
- png在Ie6下透明度处理方法
antonyup_2006
css浏览器FirebugIE
由于之前到深圳现场支撑上线,当时为了解决个控件下载,我机器上的IE8老报个错,不得以把ie8卸载掉,换个Ie6,问题解决了,今天出差回来,用ie6登入另一个正在开发的系统,遇到了Png图片的问题,当然升级到ie8(ie8自带的开发人员工具调试前端页面JS之类的还是比较方便的,和FireBug一样,呵呵),这个问题就解决了,但稍微做了下这个问题的处理。
我们知道PNG是图像文件存储格式,查询资
- 表查询常用命令高级查询方法(二)
百合不是茶
oracle分页查询分组查询联合查询
----------------------------------------------------分组查询 group by having --平均工资和最高工资 select avg(sal)平均工资,max(sal) from emp ; --每个部门的平均工资和最高工资
- uploadify3.1版本参数使用详解
bijian1013
JavaScriptuploadify3.1
使用:
绑定的界面元素<input id='gallery'type='file'/>$("#gallery").uploadify({设置参数,参数如下});
设置的属性:
id: jQuery(this).attr('id'),//绑定的input的ID
langFile: 'http://ww
- 精通Oracle10编程SQL(17)使用ORACLE系统包
bijian1013
oracle数据库plsql
/*
*使用ORACLE系统包
*/
--1.DBMS_OUTPUT
--ENABLE:用于激活过程PUT,PUT_LINE,NEW_LINE,GET_LINE和GET_LINES的调用
--语法:DBMS_OUTPUT.enable(buffer_size in integer default 20000);
--DISABLE:用于禁止对过程PUT,PUT_LINE,NEW
- 【JVM一】JVM垃圾回收日志
bit1129
垃圾回收
将JVM垃圾回收的日志记录下来,对于分析垃圾回收的运行状态,进而调整内存分配(年轻代,老年代,永久代的内存分配)等是很有意义的。JVM与垃圾回收日志相关的参数包括:
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintGCDateStamps
-Xloggc
-XX:+PrintGC
通
- Toast使用
白糖_
toast
Android中的Toast是一种简易的消息提示框,toast提示框不能被用户点击,toast会根据用户设置的显示时间后自动消失。
创建Toast
两个方法创建Toast
makeText(Context context, int resId, int duration)
参数:context是toast显示在
- angular.identity
boyitech
AngularJSAngularJS API
angular.identiy 描述: 返回它第一参数的函数. 此函数多用于函数是编程. 使用方法: angular.identity(value); 参数详解: Param Type Details value
*
to be returned. 返回值: 传入的value 实例代码:
<!DOCTYPE HTML>
- java-两整数相除,求循环节
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class CircleDigitsInDivision {
/**
* 题目:求循环节,若整除则返回NULL,否则返回char*指向循环节。先写思路。函数原型:char*get_circle_digits(unsigned k,unsigned j)
- Java 日期 周 年
Chen.H
javaC++cC#
/**
* java日期操作(月末、周末等的日期操作)
*
* @author
*
*/
public class DateUtil {
/** */
/**
* 取得某天相加(减)後的那一天
*
* @param date
* @param num
*
- [高考与专业]欢迎广大高中毕业生加入自动控制与计算机应用专业
comsci
计算机
不知道现在的高校还设置这个宽口径专业没有,自动控制与计算机应用专业,我就是这个专业毕业的,这个专业的课程非常多,既要学习自动控制方面的课程,也要学习计算机专业的课程,对数学也要求比较高.....如果有这个专业,欢迎大家报考...毕业出来之后,就业的途径非常广.....
以后
- 分层查询(Hierarchical Queries)
daizj
oracle递归查询层次查询
Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the hierarchical query clause:
hierarchical_query_clause::=
start with condi
- 数据迁移
daysinsun
数据迁移
最近公司在重构一个医疗系统,原来的系统是两个.Net系统,现需要重构到java中。数据库分别为SQL Server和Mysql,现需要将数据库统一为Hana数据库,发现了几个问题,但最后通过努力都解决了。
1、原本通过Hana的数据迁移工具把数据是可以迁移过去的,在MySQl里面的字段为TEXT类型的到Hana里面就存储不了了,最后不得不更改为clob。
2、在数据插入的时候有些字段特别长
- C语言学习二进制的表示示例
dcj3sjt126com
cbasic
进制的表示示例
# include <stdio.h>
int main(void)
{
int i = 0x32C;
printf("i = %d\n", i);
/*
printf的用法
%d表示以十进制输出
%x或%X表示以十六进制的输出
%o表示以八进制输出
*/
return 0;
}
- NsTimer 和 UITableViewCell 之间的控制
dcj3sjt126com
ios
情况是这样的:
一个UITableView, 每个Cell的内容是我自定义的 viewA viewA上面有很多的动画, 我需要添加NSTimer来做动画, 由于TableView的复用机制, 我添加的动画会不断开启, 没有停止, 动画会执行越来越多.
解决办法:
在配置cell的时候开始动画, 然后在cell结束显示的时候停止动画
查找cell结束显示的代理
- MySql中case when then 的使用
fanxiaolong
casewhenthenend
select "主键", "项目编号", "项目名称","项目创建时间", "项目状态","部门名称","创建人"
union
(select
pp.id as "主键",
pp.project_number as &
- Ehcache(01)——简介、基本操作
234390216
cacheehcache简介CacheManagercrud
Ehcache简介
目录
1 CacheManager
1.1 构造方法构建
1.2 静态方法构建
2 Cache
2.1&
- 最容易懂的javascript闭包学习入门
jackyrong
JavaScript
http://www.ruanyifeng.com/blog/2009/08/learning_javascript_closures.html
闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现。
下面就是我的学习笔记,对于Javascript初学者应该是很有用的。
一、变量的作用域
要理解闭包,首先必须理解Javascript特殊
- 提升网站转化率的四步优化方案
php教程分享
数据结构PHP数据挖掘Google活动
网站开发完成后,我们在进行网站优化最关键的问题就是如何提高整体的转化率,这也是营销策略里最最重要的方面之一,并且也是网站综合运营实例的结果。文中分享了四大优化策略:调查、研究、优化、评估,这四大策略可以很好地帮助用户设计出高效的优化方案。
PHP开发的网站优化一个网站最关键和棘手的是,如何提高整体的转化率,这是任何营销策略里最重要的方面之一,而提升网站转化率是网站综合运营实力的结果。今天,我就分
- web开发里什么是HTML5的WebSocket?
naruto1990
Webhtml5浏览器socket
当前火起来的HTML5语言里面,很多学者们都还没有完全了解这语言的效果情况,我最喜欢的Web开发技术就是正迅速变得流行的 WebSocket API。WebSocket 提供了一个受欢迎的技术,以替代我们过去几年一直在用的Ajax技术。这个新的API提供了一个方法,从客户端使用简单的语法有效地推动消息到服务器。让我们看一看6个HTML5教程介绍里 的 WebSocket API:它可用于客户端、服
- Socket初步编程——简单实现群聊
Everyday都不同
socket网络编程初步认识
初次接触到socket网络编程,也参考了网络上众前辈的文章。尝试自己也写了一下,记录下过程吧:
服务端:(接收客户端消息并把它们打印出来)
public class SocketServer {
private List<Socket> socketList = new ArrayList<Socket>();
public s
- 面试:Hashtable与HashMap的区别(结合线程)
toknowme
昨天去了某钱公司面试,面试过程中被问道
Hashtable与HashMap的区别?当时就是回答了一点,Hashtable是线程安全的,HashMap是线程不安全的,说白了,就是Hashtable是的同步的,HashMap不是同步的,需要额外的处理一下。
今天就动手写了一个例子,直接看代码吧
package com.learn.lesson001;
import java
- MVC设计模式的总结
xp9802
设计模式mvc框架IOC
随着Web应用的商业逻辑包含逐渐复杂的公式分析计算、决策支持等,使客户机越
来越不堪重负,因此将系统的商业分离出来。单独形成一部分,这样三层结构产生了。
其中‘层’是逻辑上的划分。
三层体系结构是将整个系统划分为如图2.1所示的结构[3]
(1)表现层(Presentation layer):包含表示代码、用户交互GUI、数据验证。
该层用于向客户端用户提供GUI交互,它允许用户