- 求解——妊娠纹霜哪个牌子好?皮肤专家推荐的热门秘诀!
zhangxing0100
妊娠纹会严重影响女性的美观,那孕期的女性朋友该如何避免减少妊娠纹的出现呢?下面美腹丽人小编为大家分享了预防妊娠纹的方法,赶紧一起来学习吧!一、预防妊娠纹的饮食习惯1、多食用对皮肤内胶原纤维有利的食品来增强皮肤的弹性。2、控制糖分摄入,少吃色素含量高的食物。3、早晚两杯脱脂牛奶,多食用维丰富的蔬菜、水果和富含维生素及矿物质的食物,增加细胞膜的通透性和皮肤的新陈代谢功能。4、正确的喝水习惯可以提速皮肤
- Python网络爬虫技术深度解析:从入门到高级实战
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言easyuiscrapy
1.爬虫技术概述网络爬虫(WebCrawler)是一种自动化程序,通过模拟人类浏览行为从互联网上抓取、解析和存储数据。根据应用场景可分为:通用爬虫:如搜索引擎的蜘蛛程序聚焦爬虫:针对特定领域的数据采集增量式爬虫:只抓取更新内容深层网络爬虫:处理需要交互的动态内容2.2024年Python爬虫技术栈技术分类推荐工具适用场景基础请求库requests,httpx静态页面请求解析库BeautifulSo
- 数独求解器与生成器(回溯算法实现)
佩爷0107
算法MATLAB技术图形用户界面数独谜题求解器与生成器
摘要本毕业设计旨在利用MATLAB技术实现一个基于回溯算法的数独求解器与生成器。通过深入分析数独游戏的规则和回溯算法的原理,设计并实现了数独求解的核心算法,同时开发了数独生成功能,能够生成符合规则的有效数独谜题。系统采用MATLAB图形用户界面(GUI)进行设计,提供了友好的交互界面,方便用户输入数独谜题、求解数独以及生成新的数独谜题。经过测试,该系统能够高效准确地求解和生成数独,具有较高的实用性
- RocketMQ集群高级特性
RocketMQ集群高级特性详解本文档基于RocketMQ核心源码分析,深入探讨集群架构中的高可用实现机制一、DLedger文件一致性协议1.高可用集群下的消息一致性问题核心挑战:节点不稳定性(随时宕机)网络抖动导致请求丢失数据顺序保证困难快速响应客户端需求解决方案分类:弱一致性算法:DNS/Gossip协议(RedisCluster/Cassandra使用)强一致性算法:Raft系列(Rocke
- TCAD到底难不难?应该怎么学?
懒小木半导体器件
算法tcad芯片
part1TCAD到底难不难?经常收到新学员提问,TCAD到底难不难?就我而言,说简单也简单,说难也难。简单是因为有很多先例,复制过来直接就可以运行,稍做修改就可以得到自己想要的结果。难是因为软件背后蕴含了复杂的半导体物理、器件物理、数值求解以及网格和图形学等知识。如果对这些不熟悉,就像盲人摸象,虽求解出了结果,但对仿真里面的每一句代码都不清楚用途,不懂原理,对所建立的仿真模型的“适用性”“准确性
- 基于白鲸算法优化的混合核极限学习机(HKELM)的回归预测
智能算法研学社(Jack旭)
#混合核极限学习机HKELM智能优化算法应用算法回归
基于白鲸算法优化的混合核极限学习机(HKELM)的回归预测文章目录基于白鲸算法优化的混合核极限学习机(HKELM)的回归预测1.HKELM原理2.预测问题求解3.基于白鲸算法优化的HKELM4.实验结果5.Matlab代码1.HKELM原理核极限学习机(KELM)是一种单隐含层前馈神经网络,通过引入核函数改善极限学习机(ELM)性能,其输出可表示为:f(x)=h(x)HU(ZC+HHU)−1U=[
- 基于食肉植物算法优化的混合核极限学习机(HKELM)的回归预测
智能算法研学社(Jack旭)
#混合核极限学习机HKELM智能优化算法应用算法回归数据挖掘
基于食肉植物算法优化的混合核极限学习机(HKELM)的回归预测文章目录基于食肉植物算法优化的混合核极限学习机(HKELM)的回归预测1.HKELM原理2.预测问题求解3.基于食肉植物算法优化的HKELM4.实验结果5.Matlab代码1.HKELM原理核极限学习机(KELM)是一种单隐含层前馈神经网络,通过引入核函数改善极限学习机(ELM)性能,其输出可表示为:f(x)=h(x)HU(ZC+HHU
- 基于蛇优化算法优化的混合核极限学习机(HKELM)的回归预测
基于蛇优化算法优化的混合核极限学习机(HKELM)的回归预测文章目录基于蛇优化算法优化的混合核极限学习机(HKELM)的回归预测1.HKELM原理2.预测问题求解3.基于蛇优化算法优化的HKELM4.实验结果5.Matlab代码1.HKELM原理核极限学习机(KELM)是一种单隐含层前馈神经网络,通过引入核函数改善极限学习机(ELM)性能,其输出可表示为:f(x)=h(x)HU(ZC+HHU)−1
- 神经网络和机器学习的一些基本概念
荼渔
机器学习神经网络
记录一些基本概念,不涉及公式推导,因为数学不好,记了也没啥用,但是知道一些基本术语以及其中的关系,对神经网络训练有很大帮助。可能有些概念不会讲得很详细,但是当你有了这个概念,你就知道往这个方向去获取更详细的信息,不至于连往哪走都不知道。下面以多元线性回归模型为例1.模型模型训练过程就是利用已知的x和y,求解b的过程,b也称为权重。虽然没有那么简单,但是训练完成的模型本质上就是一组权重值,如[b1,
- 【数学二】一元函数微分学- 利用导数的概念、定理、几何含义求解
WEL测试
数学二学习考研数学二导数
考试要求1、理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2、掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3、了解高阶导数的概念,会求简单函数的高阶导数.4、会求分段函数的导数,
- 王谦讳:12.17黄金V型大反转;最新黄金白银TD实时趋势分析
王谦讳
黄金消息面:周三(12月16日)亚洲时段,现货黄金走高,创一周以来新高,现报1857.32美元/盎司,涨幅0.2%,投资者继续密切关注美国的刺激措施谈判以及美联储的政策声明。王谦讳表示,“市场渴望美国刺激计划方面的任何进展,而昨晚出现的两党会谈消息,轻微地提高了通胀预期,利好黄金。”美国国会领导人周二表示,民主党与共和党领袖两度开会,寻求解决围绕新冠纾困计划而出现的长达多月的僵局,会谈已经取得巨大
- 【算法竞赛学习笔记】基础算法篇:枚举
前言本文为个人学习的算法学习笔记,学习笔记,学习笔记,不是经验分享与教学,不是经验分享与教学,不是经验分享与教学,若有错误各位大佬轻喷(T^T)。主要使用编程语言为Python3,各类资料题目源于网络,主要自学途径为蓝桥云课,侵权即删。算法思想枚举即通过遍历所有可能情况得到目标结果(暴力求解)。将问题空间划分为一系列离散的状态,并通过遍历这些状态来寻找解决方案。题目特征求解多个数,多种情况,有限制
- 【算法竞赛学习笔记】基础算法篇:二分
悠哉悠哉愿意
算法学习笔记学习笔记python算法
前言本文为个人学习的算法学习笔记,学习笔记,学习笔记,不是经验分享与教学,不是经验分享与教学,不是经验分享与教学,若有错误各位大佬轻喷(T^T)。主要使用编程语言为Python3,各类资料题目源于网络,主要自学途径为蓝桥云课,侵权即删。算法思想用中间值逼近某个值求解无理数根号n,可先确定一个范围,通过中点不断缩小这个范围从而估算无理数的值。二分法:每次将搜索范围缩小一半,可以在O(logn)时间内
- 动态规划 (Dynamic Programming) 算法概念-JS示例
香蕉可乐荷包蛋
#动态规划算法动态规划javascript
核心概念解析动态规划是一种用于解决具有重叠子问题和最优子结构特性的复杂问题的算法设计技术。它通过将复杂问题分解为更小的子问题,并存储子问题的解来避免重复计算,从而提高效率。关键特性最优子结构:问题的最优解包含子问题的最优解重叠子问题:在递归求解过程中,相同的子问题被多次计算无后效性:某个阶段的状态一旦确定,就不会受到后续决策的影响动态规划与分治法的区别分治法:子问题不重叠,各自独立求解动态规划:子
- 理解泊松分布与正态分布的数学之美
背景简介在统计学和数据分析领域,泊松分布和正态分布是两种极其重要的概率分布。它们不仅在理论上具有深刻的意义,而且在各种实际应用中,如自然科学研究、金融风险评估、市场调查分析等领域都扮演着关键角色。本文将深入探讨泊松分布的推导过程和作为二项分布极限的情况,以及正态分布概率密度函数的积分求解方法和其最大值及拐点的位置。泊松分布的推导泊松分布是描述在固定时间间隔或空间区域内发生某事件的次数的概率分布。它
- 中观四百论39
愚9
问曰:若一切法皆空,则应弃舍一切,那么为何经典中屡说“应当敬重修福”呢?为乐善趣者,如来说爱法,为求解脱者,呵彼况余事。为了那些爱乐人天善趣而暂时不能修习解脱法者,如来宣说了他们所喜爱的施等善法;为欲求解脱的修行人,如来对希求天趣尚且作了呵责,更何况耽著其余世事。如来于部分经典中没有宣说诸法无自性的实相,而是暂时宣说了修习人天善趣福德的法门,这是出于引导某些根器不堪承受空性深法的众生而作。长久沉溺
- 用动态规划方法求解0-1背包问题
逢着
算法动态规划算法c++
如果你对动态规划方法求解0-1背包问题的思路不清晰,直接阅读代码并不是一个好的建议。推荐一个B站up主的视频讲解:0/1背包问题-动态规划练习地址(B站视频配套的网址)#includeusingnamespacestd;constintbagVolume=6;//背包体积constintitemNumber=4;//准备放入的物品数量constintrows=itemNumber+1;//tabl
- 热传导问题Matlab有限元编程 :工业级热仿真核心技术-搭建热传导求解器【含案例源码】
suoge223
有限元编程从入门到精通算法人工智能有限元Matlabmatlab传热热传导
导读:大家好,我是SimPC。再次感谢各位依然延续着对有限元编程的探索和学习热情。经过长时间的筹备,《热传导问题Matlab有限元编程》终于和大家见面了。之前发布在仿真秀的《Matlab有限元编程从入门到精通》得到了许多同学的支持,承蒙许多同学的鼓励与反馈,我也在录制发布这门课的过程中收获许多宝贵的经验,现在回顾过去发布的内容,发现其实还是存在许多瑕疵。比如算例验证不够充分、基础理论的讲解不够系统
- 一个月掌握数据结构与算法:高效学习计划
一个月掌握数据结构与算法:高效学习计划掌握数据结构与算法是成为优秀程序员的关键一步。虽然一个月时间紧凑,但通过高效学习完全可以掌握核心内容。以下是一个系统化的学习计划:第一周:基础数据结构目标:掌握数组、链表、栈、队列、哈希表等基本数据结构Day1-2:数组与链表数组的基本操作(增删改查)单链表、双链表实现解决经典问题(如反转链表、检测环)Day3-4:栈与队列栈的应用(括号匹配、表达式求值)队列
- 基于蝠鲼觅食算法优化的混合核极限学习机(HKELM)的回归预测
智能算法研学社(Jack旭)
#混合核极限学习机HKELM智能优化算法应用算法回归数据挖掘
基于蝠鲼觅食算法优化的混合核极限学习机(HKELM)的回归预测文章目录基于蝠鲼觅食算法优化的混合核极限学习机(HKELM)的回归预测1.HKELM原理2.预测问题求解3.基于蝠鲼觅食算法优化的HKELM4.实验结果5.Matlab代码1.HKELM原理核极限学习机(KELM)是一种单隐含层前馈神经网络,通过引入核函数改善极限学习机(ELM)性能,其输出可表示为:f(x)=h(x)HU(ZC+HHU
- 从FDTD仿真到光学神经网络:机器学习在光子器件设计中的前沿应用工坊
信息快讯
机器学习神经网络人工智能光子芯片逆向设计
FDTD仿真与光学神经网络的基础概念FDTD(时域有限差分)是一种数值方法,用于求解麦克斯韦方程组,广泛应用于光子器件设计。光学神经网络通过光波导、衍射元件等物理结构实现矩阵运算,具有低能耗、高并行的优势。机器学习在光子器件设计中的作用体现在优化器件参数(如纳米结构尺寸、材料折射率分布)、加速逆设计过程(直接生成满足性能的目标结构)以及实现端到端的光学系统建模。FDTD仿真与机器学习的结合方法将F
- 【对比】群体智能优化算法 vs 贝叶斯优化
TIM老师
transformer深度学习人工智能
在机器学习、工程优化和科学计算中,优化算法的选择直接影响问题求解的效率与效果。群体智能优化算法(SwarmIntelligence,SI)和贝叶斯优化(BayesianOptimization,BO)是两种截然不同的优化范式,分别以不同的哲学和数学基础解决高维、非凸、多峰等问题。本文将从原理、特点到应用场景,深入解析两者的异同。一、基础概念1.群体智能优化算法群体智能算法受自然界生物群体行为启发(
- 题解:P10111 [GESP202312 七级] 纸牌游戏
xiaozhangawa
洛谷题解动态规划算法
题目传送门思路从标签从题面不难看出,这道题需要使用dp。所以我们就按照“dp三部曲”来求解。1.定义状态首先,最容易想到的当然是设dpidp_idpi为前iii轮的最大得分,但是我们会发现,光用一维的dpidp_idpi来表示,是远远不够的。然后,我们考虑二维dp。因为跟得分有关的还有出的牌。新的状态无非就是dpi,j(j∈{0,1,2})dp_{i,j}(j\in\{0,1,2\})dpi,j(
- 最短Hamilton路径
「止于纸扇」
#代码模板C++学习笔记算法数据结构
最短Hamilton路径在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。原理哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。对于一个有n个顶点的无向图G(V,E),我们可以使用一个二维数组dp[i][j]来表
- 学习日记-人工智能导论4-通过搜索进行问题求解1
Harrison_Huuu
学习日记-人工智能导论学习人工智能算法
目录3通过搜索问题进行问题求解3.1问题求解智能体3.1.1搜索问题和解3.1.2问题形式化3.2问题示例3.2.1标准化问题3.2.2真实世界问题3.3搜索算法3.3.1最佳优先搜索3.3.2搜索数据结构3.3.3冗余路径3.3.4问题求解性能评估3通过搜索问题进行问题求解当要采取的正确动作不是很明显时,智能体可能需要提前规划:考虑一个形成通往目标状态路径的动作序列。这样的智能体被称为问题求解智
- 40.组合总和 II
youzhihua
题目描述给定一个数组candidates和一个目标数target,找出candidates中所有可以使数字和为target的组合。candidates中的每个数字在每个组合中只能使用一次。说明:所有数字(包括target)都是正整数。解集不能包含重复的组合。示例1:输入:candidates=[10,1,2,7,6,1,5],target=8,所求解集为:[[1,7],[1,2,5],[2,6],
- python学习DAY12打卡
星仔编程
python学习打卡学习
启发式算法超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。启发式算法(HeuristicAlgorithm)是一种“经验法则”式的求解方法,用近似、快速、可接受的策略,在合理时间内找到问题的“足够好
- 机器学习-SVM支持向量机
支持向量机是一类监督学习算法,实现二分类,其决策边界是对学习样本求解的最大边距超平面。课程代码:importnumpyasnpmy_seed=2017np.random.seed(my_seed)importrandomrandom.seed(my_seed)importmatplotlibimportmatplotlib.pyplotaspltmatplotlib.rcParams['font.
- C++ PCL求解法向量及可视化
Coding的叶子
临时专栏pclc++点云
【版权声明】本文为博主原创文章,未经博主允许严禁转载,我们会定期进行侵权检索。参考书籍:《人工智能点云处理及深度学习算法》本文为专栏《Python三维点云实战宝典》系列文章,专栏介绍地址“【python三维深度学习】python三维点云从基础到深度学习_python3d点云从基础到深度学习-CSDN博客”。配套书籍《人工智能点云处理及深度学习算法》提供更加全面和系统的解析。当使用C++和PCL(P
- 动态规划:从入门到精通
本文全章节一共一万七千多字,详细介绍动态规划基础与进阶技巧,全篇以代码为主,认真读完理解,你对动态规划的理解一定会有一个质的飞跃。一、动态规划简介:动态规划(DynamicProgramming,简称DP)是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。它的核心思想是:将复杂问题分解成子问题,保存子问题的解,避免重复计算。动态规划本质上是一种用空间换时间的算法思想:时间优化:避免
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro