- TDengine 的 HISTOGRAM() 函数用户手册
HISTOGRAM函数用户使用手册概述HISTOGRAM函数是TDengine中的一个聚合函数,用于对数值数据进行直方图统计分析。它将数据按照指定的区间(bins)进行分组统计,返回每个区间内数据的数量分布,帮助用户理解数据的分布特征。语法HISTOGRAM(expr,bin_type,bin_desc,normalized)参数说明参数类型必需描述expr数值类型是要进行直方图分析的字段或表达式
- 【目标检测】刺猬数据集3238张YOLO+VOC格式
不会仰游的河马君
数据集目标检测YOLO人工智能刺猬
【目标检测】刺猬数据集3238张YOLO+VOC格式数据集格式:VOC格式+YOLO格式压缩包内含:3个文件夹,分别存储图片、xml、txt文件JPEGImages文件夹中jpg图片总计:3238Annotations文件夹中xml文件总计:3238labels文件夹中txt文件总计:3238标签种类数:1标签名称:["hedgehog"]每个标签的框数(注意yolo格式类别顺序不和这个对应,而以
- 旋转目标检测:Deep Spatial Feature Transformation for Oriented Aerial Object Detection【方法解析】
沉浸式AI
《AI与SLAM论文解析》人工智能计算机视觉旋转目标检测
DeepSpatialFeatureTransformationforOrientedAerialObjectDetection目录DeepSpatialFeatureTransformationforOrientedAerialObjectDetection摘要关键词引言相关工作旋转对齐模块特征对齐方法旋转对齐模块特征选择模块摘要航空图像中的目标检测在计算机视觉领域引起了广泛关注。不同于自然图像
- 接口测试框架3之httprunnerV3入门以及HttpRunner安装详解
吃喝玩乐秀起来
#接口测试接口
这里写目录标题一、HttpRunner简介二、HtttpRunner安装详解1.环境准备2.脚手架生成项目三、幕布登录的演练1.抓包2.脚本生成一、HttpRunner简介参考文案:https://mubu.com/doc/2vXRWPx5i3c密码:hogwarts1.为什么要开发HttpRunner(1).工具多而且杂接口测试工具,性能测试工具(2).学习成本高(3).团队协作难风格迥异,整合
- Spring AOP(面向切面编程,Aspect-Oriented Programming)
SpringAOP(面向切面编程,Aspect-OrientedProgramming)一、SpringAOP是什么?SpringAOP是Spring框架提供的面向切面编程支持,用于将横切关注点(cross-cuttingconcerns,如日志、事务、权限检查等)与核心业务逻辑分离。AOP允许开发者通过声明式方式将通用功能模块化,减少代码重复,提高代码可维护性。核心概念Aspect(切面):切面
- javaSE(从0开始)day04
目录一、Java语言的特性:1.面向对象(Object-Oriented)2.平台无关性(WriteOnce,RunAnywhere)3.强类型语言(StronglyTyped)4.自动内存管理(垃圾回收,GarbageCollection)5.多线程支持6.安全性7.健壮性(Robust)8.分布式计算9.高性能10.丰富的类库11.动态性12.解释与编译并存二、输入与输出:1.输出:2.输入:
- 神经网络初步学习3——数据与损失
X Y O
神经网络学习人工智能
一、传统机器学习与神经网络前言:该部分需要一定的机器学习与数学基础(很浅的基础),如果有不理解的地方可以自行查阅。(1)区别这里不妨以图像识别为例子:(1)在传统的机器学习视角中:我们需要人工手动去设置并提取我们的特征量,例如常见的SIFT、SURF和HOG等,随后需要我们选择合适的分类器(例如:SVM、KNN等分类器),接着把我们的参数训练出来。(2)而在神经网络的视角中:我们只需要把图片喂给它
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- 初始CNN(卷积神经网络)
超龄超能程序猿
机器学习cnn人工智能神经网络
卷积神经网络(ConvolutionalNeuralNetwork,简称CNN)作为深度学习的重要分支,在图像识别、目标检测、语义分割等领域大放异彩。无论是手机上的人脸识别解锁,还是自动驾驶汽车对道路和行人的识别,背后都离不开CNN的强大能力一、CNN诞生的背景与意义在CNN出现之前,传统的图像识别方法主要依赖人工提取特征,例如使用SIFT(尺度不变特征变换)、HOG(方向梯度直方图)等算法。这些
- 喜讯 | Navicat 蝉联 2025 年 DBTA 100 强名单
Navicat中国
Navicat17焕新上市navicat数据库
Navicat在“DBTA1002025-数据领域最重要的公司”榜单中获得表彰。该奖项旨在表彰在数据管理与分析领域的领先创新者。数据库趋势与应用集团出版人TomHogan表示:“企业正寻求扩大人工智能的应用范围,采用新的技术与应用,增加数据分析/商业智能的使用,并对现有应用进行现代化改造”,“每年,《数据库趋势与应用》杂志都会推出DBTA100榜单,旨在表彰具有创新精神、能够为客户带来新产品新体验
- OpenCV中DPM(Deformable Part Model)目标检测类cv::dpm::DPMDetector
村北头的码农
OpenCVopencv目标检测人工智能
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述OpenCV中用于基于可变形部件模型(DPM)的目标检测器,主要用于行人、人脸等目标的检测。它是一种传统的基于特征的目标检测方法,不依赖深度学习,而是使用HOG特征+部件模型来进行检测。示例代码#include#include#includeusingnamesp
- Python与Dlib库实现人脸技术实战
西域情歌
本文还有配套的精品资源,点击获取简介:本项目详细说明了如何使用Python结合Dlib库实现人脸检测、识别、数量检测和距离检测。利用Dlib提供的机器学习算法和计算机视觉功能,包括HOG特征检测、级联分类器、面部特征向量模型和关键点预测等,项目能够快速准确地在图像中检测和识别人脸。此外,还介绍了如何统计图像中的人脸数量以及如何计算人脸之间的距离。通过实际代码资源,开发者能够掌握实时人脸技术的应用,
- ES中聚合查询之date_histogram查询出现key_as_string 和 key含义
gjh1208
#ESelasticsearchjava
ES中聚合查询之date_histogram查询出现key_as_string和key含义DSL语句#实例GET/capture_features_202407/_search{"query":{"bool":{"must":[{"terms":{"plateNo":["汉A00001"]}},{"range":{"absTime":{"gte":"2024-07-1700:00:00","lt"
- Python dlib(HOG+SVM)人脸识别总结
程序媛一枚~
人脸识别python支持向量机开发语言读书笔记人脸检测识别
Pythondlib(HOG+SVM)人脸识别总结面部标志检测dlib68点(HOG+SVM),194点人脸识别模型,包括口(外嘴唇,内嘴唇),鼻,眉毛(左右眉),眼睛(左右眼),下鄂5点面部标志检测器(左眼2点,右眼2点,鼻子1点)面部对齐更高效眨眼检测ear眨眼瞬间达到0疲劳驾驶检测—连续帧ear面部对齐眼睛连线反正切获取旋转角度,期望图像眼睛横长度计算比率左眼计算右眼相对坐标眼睛横中心点作为
- 基于MATLAB图像特征识别及提取实现图像分类
jghhh01
机器学习算法人工智能
基于MATLAB的图形处理程序,可以进行图像特征识别及提取,进而实现图像分类。hog_svm.m,2276svm_images/test_image/1.jpg,20980svm_images/test_image/2.jpg,18246svm_images/test_image/3.jpg,13835svm_images/test_image/4.jpg,18539svm_images/test
- hmpcunlr.dll hpz3r5ha.dll HPPMDesktopIcon.dll histogram.ocx hsmon.dll hpqTsbDB.dll HGX.dll
a***0738
microsoftvisualstudiowindows
在使用电脑系统时经常会出现丢失找不到某些文件的情况,由于很多常用软件都是采用MicrosoftVisualStudio编写的,所以这类软件的运行需要依赖微软VisualC++运行库,比如像QQ、迅雷、Adobe软件等等,如果没有安装VC++运行库或者安装的版本不完整,就可能会导致这些软件启动时报错,提示缺少库文件。如果我们遇到关于文件在系统使用过程中提示缺少找不到的情况,如果文件是属于运行库文件的
- 量子机器学习前沿:量子神经网络与混合量子-经典算法
软考和人工智能学堂
人工智能#深度学习Python开发经验量子计算
1.量子计算基础1.1量子比特与量子门importnumpyasnpfromqiskitimportQuantumCircuit,Aer,executefromqiskit.visualizationimportplot_histogram#单量子比特操作演示defsingle_qubit_demo():qc=QuantumCircuit(1)qc.h(0)#Hadamard门创建叠加态qc.rz
- 【Flutter】udp通信
睡不醒的牛牛
Flutterflutterudp手机androidios
本片适合初学者阅读,老登可以划过啦UDP(UserDatagramProtocol)UDP中文翻译用户数据报协议,是一个无连接协议,这意味着在发送数据之前不需要建立连接。每个数据包(称为数据报)都是独立的,发送方和接收方之间没有持久的连接。UDP和TCP的主要区别特性UDPTCP连接方式无连接(Connectionless)面向连接(Connection-Oriented)可靠性不可靠(不保证数据
- Go 面向对象,封装、继承、多态
O丶ne丨柒夜
golang开发语言
Go面向对象,封装、继承、多态经典OO(Object-oriented面向对象)的三大特性是封装、继承与多态,这里我们看看Go中是如何对应的。1.封装封装就是把数据以及操作数据的方法“打包”到一个抽象数据类型中,这个类型封装隐藏了实现的细节,所有数据仅能通过导出的方法来访问和操作。这个抽象数据类型的实例被称为对象。经典OO语言,如Java、C++等都是通过类(class)来表达封装的概念,通过类的
- 【2025年软考中级】第三章数据结构3.4 数组与矩阵
houliabc
数据结构矩阵线性代数
文章目录数组与矩阵数组数组的基本概念数组的存储与地址计算行优先存储列优先存储地址计算图示矩阵矩阵的基本概念稀疏矩阵的存储三元组表(TripletTable)十字链表(OrthogonalList)特殊矩阵的压缩存储数组与矩阵数组数组的基本概念数组是定长线性表在维度上的扩展,本质是线性表的嵌套结构(线性表中的元素本身又是一个线性表)。其核心特性包括:同构性:所有数据元素类型相同、结构一致(如二维数组
- 【单调栈】-----【Largest Rectangle in a Histogram】
LargestRectangleinaHistogram题目链接题目描述如图所示,在一条水平线上有nnn个宽为111的矩形,求包含于这些矩形的最大子矩形面积(图中的阴影部分的面积即所求答案)。输入格式有多组测试数据,每组数据占一行。输入零时读入结束。每行开头为一个数字n(1≤n≤105)n(1\len\le10^5)n(1≤n≤105),接下来在同一行给出nnn个数字h1,h2,⋯ ,hn(0≤h
- React系列文章之DVA
隐形人007
前端reactdvaredux-sagareact.js前端前端框架
前言提示:本文章来自珠峰培训周啸天老师的视频讲解总结视频地址:114.关于dva-cli和roadhog的使用_哔哩哔哩_bilibilidva:https://github.com/dvajs/dva/tree/master/docs/api「官网好像打不开」antd:全局化配置ConfigProvider-AntDesignredux-saga:高级·Redux-Saga一、dva脚手架1、创
- PostHog 的核心原理
草明
运维PosHogop
“事件驱动的数据采集+本地部署的分析系统+全栈可观测能力”下面是对PostHog工作原理的详细拆解,从架构层次到数据流转流程,并涵盖其核心模块。架构总览PostHog通常由以下几个关键组件构成:用户前端→PostHogJSSDK/API→IngestionPipeline→Kafka(事件队列)↓PostgreSQL/ClickHouse(事件存储)↓后端处理服务+插件系统+分析引擎↓WebUI/
- 3_CSS3 渐变 --[CSS3 进阶之路]
桃园码工
CSS3进阶之路css3前端cssCSS3渐变
CSS3引入了渐变(gradients),它允许在两个或多个指定的颜色之间显示平滑的过渡。CSS3支持两种类型的渐变:线性渐变(LinearGradients):颜色沿着一条线性路径变化,可以是水平、垂直或者对角线方向。径向渐变(RadialGradients):颜色从一个起点开始向外扩散,形成圆形或者椭圆形的渐变效果。线性渐变线性渐变-从上到下这里有一个简单的CSS3线性渐变的例子,它从上到下应
- 【OpenCV人脸识别】基于深度学习(Dlib+HOG特征)的人脸识别——QT(C++)+Linux
1.人脸检测工具概述1.DlibDlib是一个开源的C++机器学习和计算机视觉库,用于解决多种任务,包括图像处理、计算机视觉、机器学习、数据分析等。Dlib提供了一系列工具和算法,可用于开发各种应用,从人脸检测和识别,到对象检测、形状预测、图像分类等。以下是Dlib主要的特点和功能:人脸检测和识别:Dlib提供了高性能的人脸检测器,基于HOG特征和深度学习模型。它还包括面部关键点检测和人脸识别的功
- 《Image Classification with Classic and Deep Learning Techniques》复现
几何心凉
IT优质推荐深度学习人工智能
1引言图像分类作为计算机视觉领域的核心任务,旨在将输入图像映射到离散化的语义类别标签,广泛应用于人脸识别、自动驾驶、医疗影像诊断、安防监控等场景。传统方法主要依赖手工设计的特征描述子(如SIFT、HOG、LBP)结合浅层模型(如BoVW、Fisher向量、SVM),以其可解释性和低资源消耗见长,但在端到端优化与高级表征能力方面不及深度学习。近年来,卷积神经网络(CNN)在大规模数据集(如Image
- Java八股文——Java基础「面向对象篇」
YuTaoShao
Java八股文java开发语言
参考小林coding和JavaGuide面向对象和面向过程的区别面向对象(Object-Oriented)和面向过程(Procedural-Oriented)是两种不同的编程范式,它们在设计思想、代码结构和问题解决方式上有显著的区别。1.面向对象(OOP):面向对象是一种通过对象来组织代码的编程方式。它把问题分解成一组对象,每个对象都是数据(属性)和行为(方法)的封装体。面向对象的核心概念包括类、
- OpenCV---Canny边缘检测
MzKyle
计算机视觉计算机视觉人工智能
一、基本概念与核心作用Canny边缘检测是计算机视觉中最经典的边缘检测算法之一,由JohnCanny于1986年提出。其核心目标是在噪声图像中提取精确、单像素宽、连续的边缘,广泛应用于:目标检测预处理(如Robomaster中灯条、装甲板的边缘提取)。轮廓分析(轮廓检测的前置步骤)。图像分割(通过边缘定位目标边界)。特征提取(如边缘方向直方图HOG)。与其他边缘检测算法的对比:算法优势劣势Cann
- OpenCV CUDA模块直方图计算------在 GPU 上计算输入图像的直方图(histogram)函数histEven()
村北头的码农
OpenCVopencv人工智能计算机视觉
操作系统:ubuntu22.04OpenCV版本:OpenCV4.9IDE:VisualStudioCode编程语言:C++11算法描述该函数用于在GPU上计算输入图像的直方图(histogram)。它将像素值区间均匀划分为若干个bin(桶),并统计每个bin中像素的数量。适用于单通道图像(如灰度图或某个颜色通道)。使用等间距的分箱方式(即“均匀直方图”)。支持8U和32S类型的图像。函数原型vo
- Unity技术笔记:微缩小地图的一个简易版解决方案
大费~~~
unity游戏笔记小地图游戏引擎Camera组件
需求:假如在第一人称游戏中,需要做一个小地图。为了美观和简便选择做成正方形小地图拿来干嘛呢?用于实时检测自身相对于小地图的位置,顺便监测敌人相距自身的距离远近,从而方便玩家判断危险性和优先级。方案大致思路:用一个正投影Orthographic的相机(取消透视的那种相机),竖直正对场景朝下看。在敌人和主角脚下固定一个物体(比如球体)用一些显眼的颜色渲染,从而作为指示器,方便在地图中指示。通过一系列设
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s