- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- Mamba架构的模型 (内容由deepseek辅助汇总)
Jiang_Immortals
人工智能
基于Mamba架构的模型近年来在效率和性能上展现出显著突破,以下按架构类型分类列出当前表现最出色的代表模型及其核心特点:一、纯SSM架构模型FalconMamba-7B关键创新:首个通用大规模纯Mamba模型,由阿布扎比TII开发,基于Mamba-1改进,增加RMS归一化层提升训练稳定性13。性能表现:在综合基准(IFEval、BBH、MMLU-PRO等)平均得分15.04,超越Llama3.1-
- Llama 2 模型架构深度解析:Transformer的进化
SuperAGI架构师的AI实验室
AI大模型应用开发宝典llama架构transformerai
Llama2模型架构深度解析:Transformer的进化关键词:Llama2、Transformer、模型架构、进化、人工智能摘要:本文将深入剖析Llama2的模型架构,探讨它作为Transformer进化版本的独特之处。从背景知识的介绍,到核心概念的解释,再到算法原理、实战案例以及实际应用场景等方面,为读者全面展现Llama2的魅力和价值。通过通俗易懂的语言,让即使是对技术不太熟悉的读者也能理
- 【Ollama】大模型本地部署与 Java 项目调用指南
科马
LLMjava开发语言llama语言模型
Ollama大模型本地部署与Java项目调用指南一、引言背景介绍Ollama是一个轻量级的大语言模型部署工具,支持快速在本地拉取、运行主流开源模型(如LLaMA3、Mistral、Gemma等)。它简化了模型部署的过程,内置RESTfulAPI,使得开发者可以像调用本地服务一样使用强大的大模型能力。本文将介绍如何在本地部署Ollama模型,并通过Java项目调用Ollama提供的API接口,实现本
- vscode没法选python解释器interpreter
问题比较复杂,尝试以下方案,(1)这个错误是由配置引起的,关闭vscode,ctrl+H显示配置文件,在/home/user/.config下,删除这个文件夹(里面包含错误的配置),/home/user/.config/code然后就可以正常配置vscode了。
- LLM微调训练指南
小小怪 @
人工智能自然语言处理
模型选择策略开源LLM的选择需综合评估任务需求与资源限制:LLaMA-2(7B/13B/70B):商用友好,推荐使用HuggingFace格式的社区变体(如NousResearch版本)Mistral(7B):Apache2.0许可,在推理和数学任务表现突出Falcon(7B/40B):商业授权宽松,特别适合多轮对话场景硬件匹配参考:NVIDIA3090可微调7B模型(QLoRA),A100建议尝
- 9、LLaMA-Factory项目微调介绍
Andy_shenzl
大模型学习llamaLLaMAFactory微调大模型LoRA
1、LLaMAFactory介绍 LLaMAFactory是一个在GitHub上开源的项目,该项目给自身的定位是:提供一个易于使用的大语言模型(LLM)微调框架,支持LLaMA、Baichuan、Qwen、ChatGLM等架构的大模型。更细致的看,该项目提供了从预训练、指令微调到RLHF阶段的开源微调解决方案。截止目前(2024年3月1日)支持约120+种不同的模型和内置了60+的数据集,同时封
- 【AIGC调研系列】敢于挑战Transformer的新架构Megalodon有什么优势
Zachary AI
AIGC调研相关AIGCtransformer架构
Megalodon作为一种新架构,其优势主要体现在以下几个方面:无限上下文处理能力:Megalodon能够处理无限上下文,这一点在多个证据中得到了强调[1][2][3]。这意味着它能够在处理长文本时保持高效和准确,而不会因为上下文长度的限制而降低性能。高性能:在2万亿token的训练任务中,Megalodon的性能超越了Llama2-7B,实现了非凡的效率[1][2][3]。这表明Megalodo
- 【AIGC半月报】AIGC大模型启元:2024.04(下)
AIGC大模型启元:2024.04(下)(1)Llama-3(MetaLLM)(2)Eurux-8x22B(面壁智能)(3)MEGALODON(Meta上下文长度不受限的神经网络架构)(4)Phi-3Mini(微软-最强小参数大模型)(5)日日新5.0(商汤大模型5.0版)(6)中文版Llama3(7)Qwen1.5-110B(国产Llama3)(8)Vidu(国产Sora)(1)Llama-3(
- RoPE:相对位置编码的旋转革命——原理、演进与大模型应用全景
大千AI助手
人工智能Python#OTHER人工智能深度学习大模型算法RoPE位置编码相对位置
“以复数旋转解锁位置关系的本质表达,让Transformer突破长度藩篱”旋转位置编码(RotaryPositionEmbedding,RoPE)是由JianlinSu等研究者于2021年提出的突破性位置编码方法,通过复数空间中的旋转操作将相对位置信息融入Transformer的自注意力机制,解决了传统位置编码在长序列建模中的外推瓶颈。该方法是当前主流大模型(如LLaMA、GPT-NeoX)的核心
- 【网络教程】解决Pycharm转VSCode遇到的问题(pipenv解释器设置,python导自定义包报错)
xiaoqiangclub
自学笔记网络教程pycharmpythonvscode
文章目录设置解释器导包报错设置解释器如果您和我一样,使用的是pipenv虚拟环境,在我们转到使用vscode运行代码的时候会报错,找不到对应的包,这个时候我们进行以下设置使用快捷键Ctrl+Shift+P打开命令输入框,在输入框内搜索解释器或interpreter,然后选择python解释器,如下图然后就会出现对应的pipenv虚拟环境供您选择(这些是我前面在pycharm中创建的),如下图选择您
- [VsCode]报错 python:命令“Python:Select:Interpreter“ command ‘python.setInterpreter‘ not found
报错情况在使用ctrl+shift+P后使用Python:Select:Interpreter切换解释器出错报错页面原因python在限制在受限模式下解决方案问题解决~
- 深度解析:Meta148亿美元收购Scale AI,扎克伯格的AI翻身仗能成功吗?
Code_流苏
AI知识图谱人工智能MetaScaleAIAI竞赛数据标注收购
名人说:博观而约取,厚积而薄发。——苏轼《稼说送张琥》创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder)目录一、史上最大AI收购案之一:148亿美元的收购1.交易规模史无前例2.不只是钱的问题3.为什么是49%?二、Meta的AI困境:为什么扎克伯格如此焦虑?1.Llama4的"滑铁卢"2.人才流失较重3.数据质量的"阿喀琉斯之踵"4.扎克伯格的"创始人模式"三、ScaleAI
- 使用 LLaMA 3 8B 微调一个 Reward Model:从入门到实践
茫茫人海一粒沙
Lorallama
本文将介绍如何基于Meta的LLaMA38B模型构建并微调一个RewardModel,它是构建RLHF(基于人类反馈的强化学习)系统中的关键一环。我们将使用HuggingFace的transformers、trl和peft等库,通过参数高效微调(LoRA)实现高质量RewardModel的训练。什么是RewardModel?RewardModel(RM)是RLHF流程中的评分器,它学习人类偏好:在
- LLaMA-Factory快速入门
@BangBang
LLMllama
文章目录1.背景2.环境准备2.1硬件要求2.2CUDA和Pytorch环境2.3模型下载2.4模型推理3.自定义数据集构建4.基于LoRA的sft指令微调4.1Lora微调训练4.2动态合并LoRA的推理4.3训练效果评估4.4LoRA模型合并导出5.webuiboard的使用5.1使用介绍5.2APIServer的启动与调用6进阶6.1大模型主流评测benchmark6.2部署Ollama1.
- 【运维】SGLang服务器参数配置详解
EulerBlind
LLM服务器运维网络
SGLang是一个高性能的大语言模型推理框架,提供了丰富的服务器参数配置选项。本文将基于官方文档详细介绍SGLang服务器的各种参数配置,帮助开发者更好地优化模型推理性能。常用启动命令多GPU张量并行python-msglang.launch_server--model-pathmeta-llama/Meta-Llama-3-8B-Instruct--tp2多GPU数据并行python-msgla
- 深入解析LoRA:低秩适应的高效大模型微调技术
Zhong Yang
大模型微调人工智能机器学习算法
1.背景与动机随着大语言模型(如GPT-3、Llama)的参数规模突破千亿级,传统全参数微调面临三大挑战:显存爆炸:微调70B模型需数千GB显存(如Llama-270B全微调需1.2TB显存)计算成本:全参数微调的计算量随模型规模呈二次增长过拟合风险:大规模模型对少量下游数据易产生过拟合LoRA(Low-RankAdaptation)由微软研究院提出,通过低秩矩阵分解技术,将微调参数量压缩至原模型
- Java学习第五十八部分——设计模式
慕y274
java学习设计模式
目录一、概述提要二、创建型模式——解决“如何创建对象”的问题1.单例模式(Singleton)2.工厂方法模式(FactoryMethod)3.解释器模式(Interpreter)4.建造者模式(Builder)5.原型模式(Prototype)三、结构型模式——解决“如何组合类和对象”的问题1.适配器模式(Adapter)2.桥接模式(Bridge)3.组合模式(Composite)4.装饰器模
- *SFT深度实践指南:从数据构建到模型部署的全流程解析
大千AI助手
人工智能Python#OTHER人工智能深度学习算法大模型SFT微调Lora
一、SFT技术原理与定位核心定义SFT是在预训练语言模型(如LLaMA、GPT)基础上,利用标注数据优化模型以适应特定任务的技术。其本质是通过调整模型参数,将通用语言能力迁移至专业领域(如法律、医疗)或任务(如对话生成、代码补全)。与预训练的区别预训练:使用无标注数据(如维基百科)学习通用表征,消耗千亿级token算力。SFT:使用标注数据(如指令-答案对)进行任务适配,成本仅为预训练的1/100
- 【RAG专题】如何选择合适的RAG架构?
星际棋手
人工智能
选择适合的RAG架构需结合自身业务需求、数据特点、性能要求等因素综合判断,以下是关键考量维度及对应架构选择建议:1.按数据规模与类型选择•小规模、单一类型数据(如纯文本文档库):适合基础单阶段检索架构(检索模块+生成模块)。◦检索:用轻量级嵌入模型(如BGE-base、all-MiniLM)+简单向量数据库(如FAISS)。◦生成:搭配中小型LLM(如Llama2-7B、Mistral),无需复杂
- 6、LangChain —— 使用 Huggingface 中的开源模型
Miyazaki_Hayao
LangChain实战langchain
文章目录一、概述二、大语言模型发展史三、预训练+微调的模式四、用HuggingFace跑开源模型五、申请使用Meta的Llama2模型六、通过HuggingFace调用Llama七、LangChain和HuggingFace的接口1、通过HuggingFaceHub2、通过HuggingFacePipeline八、用LangChain调用自定义语言模型一、概述 大语言模型,不止ChatGPT一种。
- 大模型或多模态在能源系统优化调度中的应用
u013250861
LLM能源人工智能
1.大模型在电力调度中的应用GAIA-电力调度大语言模型项目描述:专为电力调度设计的大语言模型,能够处理运行调整、运行监控和黑启动等任务技术特点:基于LLaMA2微调,专门针对电力系统领域优化论文:“Alargelanguagemodelforadvancedpowerdispatch”(NatureScientificReports,2025)GitHub:暂未公开源代码,但论文中提到了完整的技
- 大模型格式
目录大模型格式:ollma可以加载ggufChatGPT说:什么是GGUF?大模型格式:Ollama模型格式只能运行已打包成.gguf格式的模型,或通过其Modelfile方式构建ModelScope模型格式大多使用HuggingFaceTransformers格式,如.bin、.safetensors,与Ollama不兼容模型加载方式不同Ollama自带封装推理引擎(ggml/llama.cpp
- 报错解决:/usr/bin/python^M: bad interpreter: No such file or directory
KimmyDs
linux运维服务器
报错问题分析:这是不同系统编码格式引起的:在windows系统中编辑的.sh.py文件可能有不可见字符,所以在Linux系统下执行会报以上异常信息。一般是因为windows行结尾和linux行结尾标识不同造成的。问题解决:1)在windows下转换:利用一些编辑器如UltraEdit或EditPlus等工具先将脚本编码转换,再放到Linux中执行。转换方式如下(UltraEdit):File-->
- 本地部署 Kimi K2 全指南(llama.cpp、vLLM、Docker 三法)
迎风斯黄
llamadocker容器kimi
KimiK2是MoonshotAI于2025年7月11日发布的高性能多专家语言模型(MoE),支持最大128K上下文,激活参数规模为32B,具备极强的推理、代码生成与多轮对话能力。自从其权重以多种格式开源以来,许多开发者希望将其部署在本地,以获得更高的私密性和灵活性。本文将详细介绍三种主流本地部署路径,并提供完整的配置步骤和使用建议。准备工作(通用部分)在进行部署前,请准备如下环境与资源:✅最低硬
- 大模型本地部署-dify私有化部署-教程
一、简介dify是一个开源的LLM应用开发平台。其直观的界面结合了AI工作流、RAG管道、Agent、模型管理、可观测性功能等,可以让您快速从原型到生产。二、核心功能列表1、工作流:在画布上构建和测试功能强大的AI工作流程。2、全面的模型支持:与数百种专有/开源LLMs以及数十种推理提供商和自托管解决方案无缝集成,涵盖GPT、Mistral、Llama3以及任何与OpenAIAPI兼容的模型。完整
- Python 全局解释器锁 (Global Interpreter Lock - GIL)
Learning_By Doing
python并发编程python开发语言并发编程GIL
GIL是什么?全局解释器锁(GIL)是CPython解释器(官方、最常用的Python解释器)中的一个互斥锁(mutex)。它的核心作用是:在任意时刻,只允许一个线程执行Python字节码。这意味着,即使你的计算机有多个CPU核心,一个CPython进程中的多个线程也无法真正地并行执行Python代码。它们可以并发执行(即交替执行),但不能在同一瞬间并行运行。GIL为什么存在?GIL的存在主要是为
- LLM系统性学习完全指南(初学者必看系列)
GA琥珀
LLM学习人工智能语言模型
前言这篇文章将系统性的讲解LLM(LargeLanguageModels,LLM)的知识和应用。我们将从支撑整个领域的数学与机器学习基石出发,逐步剖析自然语言处理(NLP)的经典范式,深入探究引发革命的Transformer架构,并按时间顺序追溯从BERT、GPT-2到GPT-4、Llama及Gemini等里程碑式模型的演进。随后,我们将探讨如何将这些强大的基础模型转化为实用、安全的应用,涵盖对齐
- Llama-Omni会说话的人工智能“语音到语音LLM” 利用低延迟、高质量语音转语音 AI 彻底改变对话方式(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程llama人工智能nvidiallm
介绍“单靠技术是不够的——技术与文科、人文学科的结合,才能产生让我们心花怒放的成果。”——史蒂夫·乔布斯近年来,人机交互领域发生了重大变化,尤其是随着ChatGPT、GPT-4等大型语言模型(LLM)的出现。虽然这些模型主要基于文本,但人们对语音交互的兴趣日益浓厚,以使人机对话更加无缝和自然。然而,实现语音交互而不受语音转文本处理中常见的延迟和错误的影响仍然是一个挑战。关键字:Llama-Omni
- 【实战AI】macbook M1 本地ollama运行deepseek
东方鲤鱼
chatAImacosaillamaAIGCchatgpt
由于deepseek官网或者Aapi调用会有网络延迟或不响应的情况,故在本地搭建部署;前提条件1.由于需要拉取开源镜像,受网络限制,部分资源在前提中会下载的更快!请自行;2.设备macbookM132G下载ollamaOllama是一款跨平台推理框架客户端(MacOS、Windows、Linux),专为无缝部署大型语言模型(LLM)(如Llama2、Mistral、Llava等)而设计。通过一键式
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring