- 【三桥君】MCP中台,究竟如何实现多模型、多渠道、多环境的统一管控?如何以MCP为核心设计AI应用架构?
三桥君
《三桥君MCP落地方法论》《三桥君AI大模型落地方法论》#《三桥君AI产品方法论》人工智能AI产品经理MCPAPI三桥君系统架构llama
你好,我是✨三桥君✨本文介绍>>一、引言随着人工智能技术的快速发展,越来越多的企业开始引入大语言模型(LLM)以提升用户体验和运营效率。然而,如何高效、稳定地将这些AI能力落地到生产环境呢?传统的系统架构往往难以应对AI应用的高并发、低延迟和灵活扩展需求,因此,从整体架构角度设计AI应用架构显得尤为重要。本文三桥君将深入探讨以MCP为核心的AI应用架构,并分析多种部署方式的优劣势,为企业在AI落地
- 在Ubuntu24.04搭建VLLM, SGLang 和 LangChain环境
小熊冲!冲!冲!
AIubuntulangchainai毕业设计
在Ubuntu24.04搭建VLLM,SGLang和LangChain环境[!NOTE]概述整片文章是笔者的回忆(白天忙碌了一天,晚上进行的总结),所以有些地方的描述可能有误差,本文更多的是大体方向问题,细节步骤不是本文的重点,见谅!!!如何安装Ubuntu24.04制作启动U盘,作者使用的是rufus.exe工具下载Ubuntu24.04的ISO镜像使用rufus.exe工具刷入Ubuntu22
- 如何从模型返回结构化数据
努力学习agent
langchain人工智能
with_structured_output()方法支持此方法的模型ProviderToolcallingStructuredoutputJSONmodeLocalMultimodalPackageChatAnthropic✅✅❌❌✅langchain-anthropicChatMistralAI✅✅❌❌❌langchain-mistralaiChatFireworks✅✅✅❌❌langchain
- Langchain学习笔记(十):文档加载与处理详解
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。前言在构建基于大语言模型的应用时,文档处理是一个至关重要的环节。无论是构建RAG(检索增强生成)系统,还是进行知识库问答,我们都需要将各种格式的文档转换为模型可以理解和处理的形式。Langchain提供了强大的文档加载和处理功能,支持多种文件格式,并提
- Langchain学习笔记(十二):Memory机制与对话管理
zhangsan0933
LangChainlangchain学习笔记
注:本文是Langchain框架的学习笔记;不是教程!不是教程!内容可能有所疏漏,欢迎交流指正。后续将持续更新学习笔记,分享我的学习心得和实践经验。前言在构建智能对话系统时,记忆功能是至关重要的。想象一下,如果每次与AI对话都像第一次见面一样,无法记住之前的交流内容,这样的体验将是多么糟糕。LangChain的Memory机制正是为了解决这个问题而设计的,它让AI能够"记住"对话历史,从而提供更加
- VideoChat:开源的数字人实时对话系统,支持自定义数字人的形象和音色
蚝油菜花
每日AI项目与应用实例人工智能开源TTS语音识别
❤️如果你也关注大模型与AI的发展现状,且对大模型应用开发非常感兴趣,我会快速跟你分享最新的感兴趣的AI应用和热点信息,也会不定期分享自己的想法和开源实例,欢迎关注我哦!微信公众号|搜一搜:蚝油菜花快速阅读VideoChat是一款开源的实时数字人对话系统,支持语音输入和实时对话功能,首包延迟低至3秒。用户可以根据需要自定义数字人的形象和音色,实现个性化交互。VideoChat支持ASR-LLM-T
- LangChain specific default response
营赢盈英
AIlangchainpythonopenaiapi
题意:LangChain特定的默认响应问题背景:usingLangChainandOpenAI,howcanIhavethemodelreturnaspecificdefaultresponse?forinstance,let'ssayIhavethesestatement/responses使用LangChain和OpenAI时,如何让模型返回特定的默认响应?例如,假设我有如下的陈述/响应:St
- 使用中转API在Python中调用大型语言模型 (LLM) 的实践**
qq_37836323
python语言模型开发语言
**在人工智能技术中,大型语言模型(LLM)已成为自然语言处理(NLP)和生成任务的重要工具。然而,由于网络限制,直接访问OpenAI的API在中国可能面临挑战。因此,本文将介绍如何使用中转API地址http://api.wlai.vip来调用LLM,并提供相关的demo代码。什么是大型语言模型(LLM)?大型语言模型是一种深度学习模型,训练于大量文本数据上,能够生成、总结、翻译和回答问题等。Op
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- 赋能未来数学课堂——基于Qwen3、LangChain与Agent架构的个性化教辅系统研究
微学AI
langchain架构
文章目录摘要引言:技术融合催生的教育新范式第一章:Qwen3+LangChain+Agent架构的核心能力与优势1.1Qwen3模型:专为复杂推理打造的“智能大脑”1.2LangChain框架:构建智能体的“灵活骨架”1.3Agent智能体:自主解决问题的“执行中枢”1.4部署与成本优势第二章:在数学教育中解决的关键问题2.1从“答案”到“过程”:深度解析与分步式辅导2.2千人千面:实现高度个性化
- AI+MCP智能研判系统架构
AI+MCP智能研判系统架构1.系统概述1.1核心理念AI+MCP智能研判系统是一个创新的网络安全分析平台,通过将大语言模型(LLM)的智能理解能力与MCP(ModelContextProtocol)协议的标准化工具调用能力相结合,实现了"自然语言提问→AI智能理解→MCP工具调用→AI深度研判→智能结果输出"的完整闭环。1.2技术创新点智能意图识别:基于LLM的自然语言理解,自动解析用户查询意图
- 优化提示内容生成技术框架:提示工程架构师的坚实后盾
优化提示内容生成技术框架:提示工程架构师的坚实后盾引言背景:大语言模型时代的“提示瓶颈”当GPT-4、Claude3、Gemini等大语言模型(LLM)的参数规模突破万亿、上下文窗口扩展至百万token时,一个矛盾逐渐凸显:模型能力的跃升与提示质量的滞后,正在成为制约AI应用落地的核心瓶颈。2023年斯坦福大学的研究显示,在企业级LLM应用中,70%的功能故障源于提示设计缺陷——或因指令模糊导致输
- 从0搭建到持续优化:提示工程架构师的评估体系迭代全流程
从0搭建到持续优化:提示工程架构师的评估体系迭代全流程引言:AI时代的关键角色与评估挑战在人工智能技术迅猛发展的今天,提示工程(PromptEngineering)已从一个小众技能演变为决定AI系统成败的核心能力。随着大语言模型(LLM)能力的不断增强,提示工程架构师(PromptEngineeringArchitect)作为一个新兴职业应运而生,成为连接业务需求与AI能力的关键桥梁。为什么提示工
- !LangChain代理决策架构与源码深度剖析(75)
LangChain代理决策架构与源码深度剖析一、LangChain代理决策架构概述1.1代理决策架构的核心组件LangChain代理的决策架构是其智能交互的核心,主要由大语言模型(LLM)、工具集(Tools)、提示模板(PromptTemplate)、规划器(Planner)、执行器(Executor)和反馈机制六大组件构成。这些组件通过协同工作,实现从用户输入解析到最终结果输出的完整决策流程。
- !LangChain文档加载器的接口设计与多种格式解析源码深度解析(77)
LangChain文档加载器的接口设计与多种格式解析源码深度解析一、文档加载器概述1.1文档加载器的作用与定位LangChain文档加载器(DocumentLoaders)是整个框架中负责数据输入的核心组件,其主要作用是从不同来源(本地文件、网络资源、数据库等)读取原始文档,并将其转换为LangChain可处理的Document对象格式。在实际应用中,无论是构建问答系统、知识图谱,还是进行文本摘要
- Crome:因果鲁棒奖励建模框架——破解LLM对齐中的奖励黑客难题
大千AI助手
人工智能#OTHERPython人工智能深度学习神经网络大模型因果推断奖励黑客RewardHacking
Crome(CausalRobustRewardModeling)是由GoogleDeepMind联合麦吉尔大学和魁北克人工智能研究所(MILA)于2025年提出的创新框架,旨在解决大语言模型(LLM)对齐中奖励模型(RM)的奖励黑客(RewardHacking)问题。该框架通过因果数据增强与反事实训练机制,显著提升RM对真实质量属性(如事实性、安全性)的敏感性,同时抑制对虚假属性(如文本长度、格
- Python面向对象编程入门:从类与对象到方法与属性
吴师兄大模型
python人工智能面向对象编程开发语言类对象PYTHON
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【大模型LLM学习】function call/agent学习记录
威化饼的一隅
大模型LLM学习agentlangchain意图识别functioncall工具调用
【大模型LLM学习】functioncall/agent学习记录0前言1langchain实现functioncall2调用本地模型3微调本地模型3.1few-shot调用Claude生成Q-A对3.2tools格式3.3agent微调格式3.4swift微调p.s.0前言 记录一下使用langchain做简单的functioncall/agent(或者说意图识别,如果函数有返回值再进行summ
- 提示工程监控不到位:5个未做日志记录导致的排查困难
提示工程监控不到位:5个未做日志记录导致的排查困难关键词:提示工程,日志记录,LLM应用调试,AI监控,排查困难,提示模板,上下文追踪摘要:在大语言模型(LLM)应用爆发的时代,提示工程已成为连接人类需求与AI能力的核心桥梁。但多数开发者聚焦于"如何写好提示",却忽视了"如何记录提示"——日志记录作为提示工程的"黑匣子",直接决定了AI应用故障排查的效率与准确性。本文通过5个真实场景案例,深入浅出
- 提示工程中的上下文窗口优化:架构师提升模型记忆的关键
AI实战架构笔记
ai
提示工程中的上下文窗口优化:架构师提升模型记忆的关键元数据标题:提示工程中的上下文窗口优化:架构师提升模型记忆的关键策略与实践指南关键词:上下文窗口管理、提示工程架构、大型语言模型优化、注意力机制效率、长序列处理、记忆增强技术、动态上下文规划摘要:在大型语言模型(LLM)应用中,上下文窗口是连接模型能力与实际需求的关键桥梁。本文从架构师视角,系统探讨上下文窗口优化的理论基础、设计原则与实施策略。通
- 「实战指南」使用 Python 调用大模型(LLM)
用什么都重名
大模型相关pythonLLM大模型api调用
目录前言1.原生HTTP请求方式1.1核心特点1.2关键代码分析1.3优势和适用场景1.4完整代码2.封装式API调用2.1核心特点2.2关键代码分析2.3优势和适用场景2.4完整代码3.OpenAISDK方式3.1核心特点3.2关键代码分析3.3优势和适用场景3.4完整代码4.传统OpenAI库方式4.1核心特点4.2关键代码分析4.3优势和适用场景4.4完整代码5.对比分析总结前言随着大语言模
- 实践篇:构建基于LLM与本地Pandas的混合式数据分析引擎
超人阿亚
pandas数据分析数据挖掘
公众号:dify实验室基于LLMOps平台-Dify的一站式学习平台。包含不限于:Dify工作流案例、DSL文件分享、模型接入、Dify交流讨论等各类资源分享。在上一篇《思路探索:当大型语言模型遇见数据分析的现实挑战》中,我们阐述了团队确立的技术路线:利用大型语言模型(LLM)作为自然语言到代码的“翻译器”,并结合PythonPandas库作为后端的高性能“计算核心”。本文将从工程实践的角度,详细
- 2024智能交通趋势:提示工程架构师用AI提示词引领技术变革
AIGC应用创新大全
人工智能ai
2024智能交通趋势:提示工程架构师用AI提示词引领技术变革副标题:从自动驾驶决策到城市交通大脑——大语言模型提示工程实战指南摘要/引言问题陈述:智能交通系统正面临前所未有的复杂性挑战——自动驾驶车辆需要实时处理多源异构数据,城市交通管理需平衡效率与安全,出行服务平台要满足个性化需求。传统AI开发模式依赖大量标注数据和专业领域知识,导致系统迭代缓慢、场景适应性差。当大语言模型(LLM)成为通用人工
- Java中的模型API、RAG与向量数据库:构建智能应用的新范式
张道宁
人工智能
引言在当今人工智能迅猛发展的时代,Java开发者如何利用最新的AI技术构建智能应用?本文将深入探讨模型API、检索增强生成(RAG)和向量数据库这三种关键技术,以及它们如何协同工作来提升Java应用的智能化水平。一、模型API:Java中的AI能力接入1.1什么是模型API模型API是大型语言模型(LLM)提供的编程接口,允许开发者通过HTTP请求与AI模型交互。在Java生态中,我们可以通过多种
- 大模型 MCP:开启 AI 与现实世界的无缝交互革命
u013250861
LLM人工智能交互microsoft
前言MCP无疑是当前最受关注的前沿技术之一,无论是在公司内部还是外部,都引起了广泛的讨论与实践。作为一名互联网从业者,笔者自然不愿错过这一科技浪潮。本篇文章分享笔者最近的一些实践经验和心得,希望能抛砖引玉。WHAT:什么是MCP?MCP(ModelContextProtocol,模型上下文协议)是由Anthropic推出的开源协议,旨在实现大型语言模型(LLM)与外部数据源和工具的无缝集成,用来在
- 揭秘Transformer架构:残差流与隐藏层的关系
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer深度学习人工智能linux算法
在Transformer架构的LLM中,“残差流”(residualstream)和“隐藏层”(hiddenlayers)是密切相关但不同的概念,前者是层间流动的核心数据,后者是处理这些数据的结构单元。1.残差流(ResidualStream):层间传递的“信息流”残差流指的是在Transformer层之间传递的核心张量,它是模型中“流动”的数据载体。其本质是通过“残差连接”(residualco
- LangChain:大模型时代的开发利器
tanak
Python大模型应用全栈实战langchain人工智能python
文章目录什么是LangChain?深入解析其核心理念与组件1.模型(Models)2.提示(Prompts)3.链(Chains)4.索引(Indexes)5.记忆(Memory)6.工具(Tools)7.代理(Agents)LangChain在大模型应用中的核心地位与典型场景核心地位:连接、抽象、赋能典型应用场景:LangChain如何赋能实际业务结语:拥抱LangChain,构建大模型应用的未
- 神经架构搜索革命:从动态搜索到高性能LLM的蜕变之路
本文将揭示如何通过神经架构搜索技术(NAS)自动发现最优网络结构,并将搜索结果转化为新一代高性能大型语言模型的核心技术。我们的实验证明,该方法在同等计算资源下可实现80%的性能飞跃!第一部分:神经架构搜索引擎的实现奥秘1.动态操作熔炉架构classMaxStateSuper(nn.Module):def__init__(self,dim_size,heads):#定义5种候选操作self.ops=
- 大模型服务架构设计与性能优化指南
陈乔布斯
人工智能大模型AI性能优化人工智能Python大模型AI模型服务
引言在大模型应用开发中,模型服务作为核心组件,负责提供高效、稳定的模型推理能力。随着大语言模型(LLM)的快速发展,模型服务架构面临着性能、可扩展性和成本的多重挑战。本文将深入探讨模型服务的核心组件、架构设计、性能优化技术,并结合电商、金融科技等合规行业案例,为开发者提供全面的模型服务设计指南。一、模型服务核心组件1.1推理引擎推理引擎是模型服务的核心,负责执行模型推理计算。目前主流的推理引擎包括
- Dify 本地化部署深度解析与实战指南
逻极
difyAI开源模型DifyAI人工智能工作流AgentAI编程AI实战
Dify本地化部署深度解析与实战指南引言Dify是一个开源的低代码/无代码AI应用开发平台,旨在帮助用户快速构建和部署基于大型语言模型(LLM)和自主代理的AI应用。Dify的本地化部署允许用户在本地机器或服务器上运行平台,提供更高的数据隐私、成本控制和离线功能。本文将深入探讨Dify的本地化部署方法,包括DockerCompose和源代码部署,结合系统要求、实战步骤和最佳实践,为用户提供逻辑清晰
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理