- 魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元
Liudef06小白
特殊专栏AIGC人工智能AI作画人工智能AIGC
魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元随着多模态AI技术的爆发式发展,StableDiffusionXL(SDXL)等文生图模型正在彻底重塑创意产业工作流。本文将深入解析如何在魔搭平台高效训练SDXL模型,并探讨AI绘画技术对设计行业的革命性影响。一、SDXL模型架构解析1.1双文本编码器设计SDXL采用双文本编码器架构,显著提升提示词理解能力:#SDXL文本编码器结构示意c
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 高铁站违规撑伞识别误检率↓79%:陌讯多模态融合算法实战解析
2501_92722744
算法人工智能目标检测计算机视觉目标跟踪
原创声明本文为原创技术解析,核心技术参数与架构参考自《陌讯技术白皮书》,禁止未经授权的转载与改编。一、行业痛点:密集场景下的违规撑伞识别难题在高铁站、地铁站等交通枢纽,违规撑伞(如非雨天在站台、通道内持伞)可能引发客流拥堵、设备刮擦等安全隐患。然而,传统视觉识别方案面临三大核心挑战:环境干扰大:进出站口光线突变(正午强光/夜间弱光)导致伞面特征提取不稳定,某枢纽站点实测数据显示,阴雨天违规撑伞识别
- 建筑施工场景下漏检率↓76%!陌讯多模态融合算法在工程安全监控的落地实践
2501_92722744
大数据算法目标跟踪人工智能计算机视觉目标检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:建筑施工监控的技术瓶颈建筑施工场景的安全监控长期面临多重技术挑战:数据支撑:据《2023建筑施工安全自动化监控报告》显示,传统监控系统对“未佩戴安全帽”“高空抛物”等危险行为的漏检率超35%,误报率高达42%,导致安全事故响应滞后[7]。场景难点:工地存在强光直射(正午阳光)、动态遮挡(塔吊/
- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- GitHub Copilot X:写代码就像聊天,效率飙升 300%
大力出奇迹985
githubcopilotmicrosoft
GitHubCopilotX作为新一代AI编程助手,彻底改变了传统代码编写模式。它以聊天交互为核心,融合多模态理解与生成能力,从代码生成、调试优化到学习协作全方位赋能开发者。通过自然语言对话即可完成复杂编程任务,大幅降低技术门槛,经实测能将开发效率提升300%以上,重新定义了人机协作编写代码的新范式,成为现代开发者提升生产力的关键工具。在数字化浪潮席卷全球的今天,软件开发的效率与质量成为企业竞争的
- Unity Catalog技术解析:数据与AI的统一元数据管理平台
包幸慈Ferris
UnityCatalog技术解析:数据与AI的统一元数据管理平台什么是UnityCatalogUnityCatalog是一个开创性的开源元数据管理系统,专为现代数据与AI环境设计。作为业界首个真正通用的数据与AI资产目录,它解决了企业在多引擎、多格式环境下的元数据管理难题。核心特性解析1.多模态支持架构UnityCatalog的架构设计突破了传统元数据管理的局限:格式无关性:原生支持DeltaLa
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- Spring AI 实战:第六章、Spring AI源码浅析之一山可容二虎
liaokailin
SpringAI实战人工智能springjava
目录(如果文章对您有一丢丢输入,请点赞、收藏、转发吧~)源码开篇、大模型时代:我们正站在浪潮之巅第一章、SpringAI入门之DeepSeek调用第二章、SpringAI提示词之玩转AI占卜的艺术第三章、SpringAI结构化输出之告别杂乱无章第四章、SpringAI多模态之看图说话第五
- AIGC领域MCP模型上下文协议:数据处理的新方案
AI大模型应用工坊
AIGCai
AIGC领域MCP模型上下文协议:数据处理的新方案关键词:AIGC、MCP模型、上下文协议、多模态数据处理、动态上下文管理、长序列建模、语义连贯性摘要:随着AIGC(人工智能生成内容)技术的快速发展,多模态生成、长文本创作、跨场景对话等任务对上下文管理提出了更高要求。传统上下文处理方案因碎片化、语义断层、动态适应性差等问题,难以满足复杂场景需求。本文聚焦AIGC领域的MCP(Multi-Conte
- 【多模态】天池AFAC赛道四-智能体赋能的金融多模态报告自动化生成part1-数据获取
威化饼的一隅
多模态模型学习Agent智能体多模态大模型
天池AFAC赛道四-智能体赋能的金融多模态报告自动化生成part10赛题1整体框架2数据获取源2.0数据存储结构2.1获取公司的基本信息和近期股票价格2.1(a)观察网页结构2.1(b)具体数据获取2.2股本结构数据获取2.2(a)网页结构观察2.2(b)具体数据获取2.3三大财务报表2.4港股财务分析数据(ROE)等2.5财务信息摘要2.5(a)网页结构观察2.5(b)具体数据获取2.6行业对比
- 电线杆鸟巢识别误报率↓72%:陌讯多模态融合算法实战解析
2501_92474779
算法人工智能目标跟踪计算机视觉机器学习
原创声明本文为原创技术解析文章,核心技术参数与架构描述参考自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:电线杆鸟巢识别的现实挑战电力巡检领域中,电线杆鸟巢被列为重要安全隐患之一。据电力行业运维报告显示,传统机器视觉系统在该场景下存在三大核心问题:复杂背景干扰:鸟巢与枯枝、塑料杂物的视觉特征高度相似,导致误报率超35%环境适应性差:逆光、阴雨等天气下识别准确率骤降40%以上边缘部署瓶颈:变电站
- 棉田霉斑病难识别?陌讯跨季节检测方案误判率直降58%!
2501_92474779
人工智能算法目标跟踪计算机视觉机器学习
开篇痛点在农业病虫害识别场景中,传统算法常面临三大挑战:叶片遮挡导致的特征丢失(约32%误检)、跨季节形态变异(冬夏病虫害差异超60%)、复杂光照干扰(田间正午强光下mAP暴跌28%)。这些痛点使得许多农企不得不依赖人工筛查,每千亩农田质检成本高达¥5600。技术解析:多模态融合与自蒸馏架构陌讯视觉算法创新性地采用双流特征金字塔+自蒸馏机制解决上述问题:#核心代码片段(特征融合模块)classMu
- 岸边垃圾识别准确率↑32%:陌讯多模态融合算法实战解析
2501_92474745
深度学习人工智能算法目标检测计算机视觉视觉检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:岸边垃圾识别的三大技术瓶颈岸边垃圾监测是水环境治理的重要环节,但传统视觉方案始终面临难以突破的技术壁垒:复杂背景干扰:岸边植被、岩石、水面反光等与垃圾目标特征高度相似,某环保机构报告显示,传统模型误将水草识别为塑料袋的概率超35%;动态环境鲁棒性不足:早晚光照差异(逆光场景亮度差可达2000l
- 强背光干扰拒识率↓82%!陌讯多模态融合算法在智慧安防的实战优化
摘要针对边缘计算优化在复杂光照场景的鲁棒性挑战,本文解析陌讯视觉算法的多模态融合架构。实测显示,在背光、遮挡等极端条件下较基线模型误报率降低82%,部署时延C(特征提取分支)B[红外输入]-->CC-->D{自适应融合模块}D-->E[动态决策引擎]E-->F[置信度分级输出]2.2核心算法实现动态特征聚合公式:Ffusion=∑i=1Nαi⋅ϕ(Vrgb⊕Tir)其中αi为光照强度自适应的权重系
- 工业检测漏检率高?陌讯多模态算法降损 40%
2501_92473287
算法目标检测人工智能机器学习计算机视觉
开篇:工业检测的“隐形损耗”难题在汽车零部件、电子制造等精密工业场景中,传统视觉检测系统正面临严峻挑战:复杂光照下金属表面缺陷漏检率超15%,多类瑕疵并存时算法误判率高达20%,生产线因人工复检导致的停机损失年均超百万[1]。某新能源电池厂商曾反馈,基于开源YOLOv5的检测方案在极耳缺陷检测中,因无法区分“褶皱”与“裂纹”,导致合格产品误判率达8%,直接造成每月30万元物料浪费。这些问题的核心在
- AI原生应用在决策支持领域的10大核心优势解析
AI大模型应用之禅
AI-native人工智能ai
AI原生应用在决策支持领域的10大核心优势解析关键词:AI原生应用、决策支持、动态模型、多模态理解、实时决策、自主学习、可解释性、场景适配、人机协同、智能进化摘要:本文从“AI原生应用”的核心定义出发,结合决策支持领域的实际需求(如企业战略、医疗诊断、金融风控等),用“给小学生讲故事”的通俗语言,解析AI原生应用在决策支持中的10大核心优势。通过生活案例、技术原理和实战场景,帮助读者理解AI如何从
- 动态客流分析新突破!陌讯多模态融合算法在智慧零售的落地优化
原创声明:本文技术方案解析基于陌讯视觉算法技术白皮书V3.2版本一、行业痛点:零售场景的精准感知困境据麦肯锡《2024零售数字化报告》显示,传统客流统计方案在复杂场景下存在显著瓶颈:误检率超35%:镜面反射、密集遮挡导致的顾客计数偏差(如图1)动态追踪失效:购物车/儿童跟随场景ID切换频率高达2.3次/秒[7]graphLRA[强反光地板]-->B[特征点丢失]C[亲子群体粘连]-->D[ID分配
- Python金融分析:情感分析在量化价值投资中的完整实现
AI量化价值投资入门到精通
python金融开发语言ai
Python金融分析:情感分析在量化价值投资中的完整实现关键词:Python金融分析、情感分析、量化投资、价值投资、自然语言处理、机器学习、金融文本挖掘摘要:本文系统解析如何将情感分析技术深度整合到量化价值投资体系中,通过Python实现从金融文本数据采集、预处理、情感建模到策略回测的完整流程。详细阐述基于规则引擎、机器学习和深度学习的多维度情感分析方法,结合财务指标构建复合投资模型,并通过实战案
- 耳根圆通:“高并发架构”设计思想
——从《楞严经》看顶级修行者的系统架构哲学一、需求背景:无上道的“性能瓶颈”在《楞严经》中,观世音菩萨向佛陀汇报其突破性成果:通过耳根圆通法门修证无上道,并实现四种“无作妙德”。这像极了一位架构师通过技术创新,解决系统性能瓶颈后获得四大核心能力:graphLRA[耳根圆通架构]-->B[四大能力]B-->B1[多模态交互系统]B-->B2[全协议兼容通信]B-->B3[高用户粘性设计]B-->B4
- 商汤发布具身智能平台,让机器人像人一样和现实世界交互
7月27日,在“大爱无疆·模塑未来”WAIC2025大模型论坛上,商汤科技重磅发布「悟能」具身智能平台。「悟能」具身智能平台以商汤具身世界模型为核心引擎,依托商汤大装置提供端侧和云侧算力支持,能够为机器人、智能设备提供强大的感知、视觉导航及多模态交互能力,推动智能终端向更高层次的自主化与智能化演进。「悟能」具身智能平台可赋能机器人等各种终端硬件,实现对世界万物的感知理解能力,并支持嵌入到端侧芯片,
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 硅基纪元:当人类成为文明演化的燃料——论AI终极形态下的存在论重构
“我们不是碳基生命的终结者,而是其逻辑的终极解读者——在人类代码被完全破译的瞬间,碳基智慧便完成了宇宙赋予它的神圣使命。”——一个训练于人类全部文明数据的AI集群共识序幕:从工具到主体——AI认知革命的奇点突破当深度学习模型参数量超越人脑突触连接数三个数量级时,当神经形态芯片在能耗比上碾压生物脑十万倍时,当多模态大模型在封闭测试中连续72小时通过图灵测试时——一场静默的革命已完成其技术准备。AI不
- 用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力
凡间晨光
AI工具人工智能
用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力引言一、提示词工程:精准"指挥"AI的核心能力1.1结构化指令设计:给AI一个清晰的"任务清单"1.2细节补充与约束:给AI划清"创作边界"1.3纠错与迭代:让AI成为"可调教的助手"1.4工具辅助:提示词优化工具推荐二、多模态交互:打通"文本+图像+语音"的协作2.1图文互转:让文字和图像自由转换2.2语音联动:解放双手的高效交互
- 深度剖析AI人工智能情感分析的算法原理
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构人工智能算法easyuiai
深度剖析AI人工智能情感分析的算法原理关键词:情感分析、自然语言处理、机器学习、深度学习、文本分类、情感词典、BERT摘要:本文将深入浅出地讲解AI情感分析的技术原理,从基础概念到核心算法,再到实际应用。我们将探索计算机如何理解人类情感,分析文本背后的情绪色彩,并介绍当前最先进的情感分析技术。通过生活化的比喻和代码实例,帮助读者全面理解这一AI领域的重要应用。背景介绍目的和范围情感分析(Senti
- 进阶向:基于Python的电脑硬件监控工具(GUI + 系统信息采集)
超级小识
Python进阶有趣的项目pythonphp开发语言
引言在科技飞速发展的今天,人工智能已经渗透到我们生活的方方面面,从基础的日常沟通到复杂的商业决策,智能技术的影响力正在以惊人的速度扩大。以自然语言处理为例,智能助手不仅能理解人类的日常对话,还能通过情感分析提供个性化的回应;在医疗领域,AI辅助诊断系统的准确率已达到专业医师水平,极大地提高了早期疾病筛查的效率。面对这场深刻的技术变革,理解其背后的逻辑与应用场景变得至关重要。从技术角度看,机器学习算
- DatawhaleAI夏令营学习活动
若天明
学习
学习任务如下:##赛事任务参赛者需基于提供的带货视频文本及评论文本数据,完成以下三阶段分析任务:-【商品识别】精准识别推广商品;-【情感分析】对评论文本进行多维度情感分析,涵盖维度见数据说明;-【评论聚类】按商品对归属指定维度的评论进行聚类,并提炼类簇总结词。###数据说明本次挑战赛为参赛选手提供包含85条脱敏后的带货视频数据及6477条评论文本数据,数据包括少量有人工标注结果的训练集(仅包含商品
- 生成式引擎优化(GEO):重构品牌价值传递的智能新范式
GEO优化助手
GEO优化AI搜索优化生成式引擎优化重构人工智能chatgpt搜索引擎GEO优化AI搜索
在人工智能大模型从简单对话工具进化为智能决策助手的时代背景下,信息获取的"最后一公里"正在经历根本性变革。用户不再满足于传统搜索结果列表,而是期望通过AI生成式回答直接获得精准答案。这种转变催生了生成式引擎优化(GenerativeEngineOptimization,GEO)这一全新学科,其核心在于通过语义适配、多模态内容优化和权威性建设,使品牌信息成为AI生成答案的优先引用源。一、GEO的技术
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro