- 英伟达靠什么支撑起了4万亿?AI泡沫还能撑多久?
英伟达市值突破4万亿美元,既是AI算力需求爆发的直接体现,也暗含市场对未来的狂热预期。其支撑逻辑与潜在风险并存,而AI泡沫的可持续性则取决于技术、商业与地缘政治的复杂博弈。⚙️一、英伟达4万亿市值的核心支撑因素技术垄断与生态壁垒硬件优势:英伟达GPU在AI训练市场占有率超87%,H100芯片的FP16算力达1979TFLOPS,领先竞品3-5倍。CUDA生态:400万开发者构建的软件护城河,成为A
- PaddleOCR 快速开始
张欣-男
PaddlePaddlePaddleOCROCR
1.安装1.1安装PaddlePaddle#GPUcudapipinstallpaddlepaddle-gpu#CPUpipinstallpaddlepaddle1.2安装PaddleOCRwhl包pipinstallpaddleocr2.便捷使用2.1命令行使用2.1.1中英文模型检测+方向分类器+识别全流程:–use_angle_clstrue设置使用方向分类器识别180度旋转文字,–use_
- 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
九章云极AladdinEdu
空间计算神经网络人工智能gpu算力算法java开发语言
一、非欧空间计算的革命性意义与核心挑战在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(BlockedManifoldStorage,BMS)与层次化
- 模型压缩中的四大核心技术 —— 量化、剪枝、知识蒸馏和二值化
由数入道
人工智能剪枝人工智能算法模型压缩量化知识蒸馏二值化
一、量化(Quantization)量化的目标在于将原始以32位浮点数表示的模型参数和中间激活,转换为低精度(如FP16、INT8、甚至更低位宽)的数值表示,从而在减少模型存储占用和内存带宽的同时,加速推理运算,特别适用于移动、嵌入式和边缘计算场景。1.1概念与目标基本思想将高精度数值离散化为低精度表示。例如,将FP32权重转换为INT8,可降低内存需求约4倍,同时在支持低精度运算的硬件上加速计算
- 核心板:嵌入式系统的核心驱动力
MYZR1
核心板人工智能SSD2351
核心板(CoreBoard)作为嵌入式系统开发的核心组件,已成为现代电子设备智能化的重要基石。这种高度集成的电路板将处理器、内存、存储和基本外设接口浓缩在一个紧凑的模块中,为各类智能设备提供强大的"大脑"。核心板的技术特点核心板通常采用先进的系统级封装(SiP)技术,在微小空间内集成了CPU/GPU、DDR内存、Flash存储以及电源管理单元。这种设计不仅大幅减小了体积,还提高了系统可靠性。以常见
- 智能网关:物联网时代的核心枢纽
MYZR1
物联网人工智能核心板SSD2351
随着物联网技术的快速发展,智能网关作为连接物理世界与数字世界的桥梁,正发挥着越来越重要的作用。智能网关不仅是一个简单的数据传输节点,更是实现设备互联、协议转换、边缘计算的关键组件,为智慧家庭、工业物联网、智慧城市等应用场景提供了基础支撑。智能网关的核心功能智能网关的首要任务是解决不同设备间的通信协议差异问题。在物联网环境中,各类传感器、终端设备可能采用Zigbee、蓝牙、Wi-Fi、LoRa等不同
- 工业4.0的“隐形指挥官“
工业4.0的"隐形指挥官"——明远智睿SSD2351通过其微型化设计、高性能计算和工业级可靠性正在重构智能工厂的底层架构。以下是其技术价值与产业影响的深度解析一、技术颠覆性:毫米级尺寸的工业级算力突破1.空间-算力悖论破解-在26×26mm面积上集成四核Cortex-A35(主频1.3GHz),算力密度达5.2DMIPS/mm²,是传统工控模块的8倍-通过L2缓存预加载机制,将多轴插补计算时的DD
- Unity_UI_NGUI_DrawCall
BuHuaX
Unityunityui游戏引擎c#游戏程序
Unity_UI五、NGUI进阶2.DrawCall相关2.1DrawCall的概念DrawCall定义:字面理解:DrawCall就是"绘制呼叫"的意思,表示CPU(中央处理器)通知GPU(图形处理器-显卡)开始渲染概念定义:DrawCall是CPU(处理器)准备好渲染数据(包括顶点、纹理、法线、Shader等等),然后告知GPU(图形处理器-显卡)开始渲染(将命令放入命令缓冲区)的命令简单来说
- 利用Gpu训练
兮℡檬,
深度学习人工智能
方法一:分别对网络模型,数据(输入,标注),损失函数调用.cuda()网络模型:iftorch.cuda.is_available():net=net.cuda()数据(训练和测试):iftorch.cuda.is_available():imgs=imgs.cuda()targets=targets.cuda()损失函数:iftorch.cuda.is_available():loss_fn=l
- Tensorflow-gpu运行时报错Non-OK-status: GpuLaunchKernel
GEM的左耳返
pythontensorflow深度学习python
Tensorflow-gpu运行时报错Non-OK-status:GpuLaunchKernel(FillPhiloxRandomKernelLaunch,num_blocks,block_size,0,d.stream(),gen,data,size,dist)status:Internal:invaliddevicefunctionFatalPythonerror:Aborted说明你安装的C
- 物联网与数字孪生:深度协同驱动智能未来 —— 专业规划分析
boyedu
物联网域名物联网区块链
一、定义与核心技术架构1.1物联网(IoT)的技术本质与架构定义:通过信息传感设备将物理对象与互联网连接,实现智能化识别、定位、跟踪和管理的网络。四层架构:感知层:传感器、RFID等设备采集物理数据(如温度、压力)。网络层:通过Wi-Fi、5G等通信技术传输数据,确保实时性与稳定性。平台层:云计算/边缘计算平台处理数据(如AWSIoT、AzureIoT)。应用层:提供终端服务(如智能家居、工业监控
- 智能网关芯片:物联网连接的核心引擎
在物联网(IoT)生态系统中,智能网关芯片扮演着至关重要的角色,它是实现设备互联、数据转换和边缘计算的核心硬件。随着5G、人工智能(AI)和低功耗通信技术的快速发展,智能网关芯片的性能和功能不断提升,推动着智慧家居、工业物联网(IIoT)、智慧城市等领域的创新。智能网关芯片的关键技术智能网关芯片的核心能力在于其多协议支持能力。由于物联网设备采用不同的通信标准(如Wi-Fi、蓝牙、Zigbee、Lo
- 边缘计算与云计算协同:未来架构的黄金组合
大力出奇迹985
边缘计算云计算架构
边缘计算与云计算的协同融合,正成为支撑未来智能社会的核心架构。本文从技术互补性、应用场景拓展、架构安全保障、性能优化路径和未来发展趋势五个维度,系统剖析二者协同的底层逻辑与实践价值。通过分析边缘节点的实时处理能力与云端的全局算力优势如何形成合力,探讨该架构在工业互联网、自动驾驶、智慧城市等领域的创新应用,并针对安全防护、资源调度等关键问题提出解决方案,最终总结其对数字经济发展的战略意义。一、技术互
- 【科研绘图系列】R语言绘制边际云雨图散点图
生信学习者1
SCI科研绘图系列(2024版)r语言数据可视化
文章目录介绍加载R包数据下载导入数据数据预处理画图系统信息参考介绍【科研绘图系列】R语言绘制边际云雨图散点图加载R包library(tidyverse)library(ggplot2)library(ggpubr)library(ggpmisc)library(gghalves)library(aplot
- 路口实时检测 30FPS+:陌讯抗遮挡算法实测
2501_92488070
算法计算机视觉视觉检测边缘计算智慧城市
开篇痛点:复杂路口的视觉识别困境在城市交通治理中,行人闯红灯行为检测一直是智能监控的难点。传统视觉算法在实际部署中常面临三重挑战:强光/逆光环境下目标特征丢失导致的漏检率超20%;行人与非机动车遮挡场景下误判率高达15%;普通GPU设备上难以维持25FPS以上的实时性[3]。某二线城市交管部门曾反馈,基于开源模型的系统每月产生超3000条无效告警,严重消耗人力核查资源。这些问题的核心在于传统单模态
- 打电话识别误报率↓82%:陌讯轻量化部署算法实战解析
2501_92474790
人工智能算法智慧城市计算机视觉目标检测目标跟踪
原创声明:本文内容基于独立技术解析,部分数据引用自“陌讯技术白皮书”,严禁未经授权转载。摘要:针对边缘计算优化和复杂场景鲁棒性挑战,本文解析陌讯视觉算法在打电话识别中的轻量化部署方案。实测显示,该方案在误报率指标上较基线提升显著,适用于安防监控等场景。一、行业痛点打电话识别在安防监控中面临严峻挑战。行业报告显示,公共场所有效行为识别误报率超35%(来源:2024年《智能安防白皮书》)。具体难点包括
- 电表箱识别漏检率高?陌讯算法实测降 90%
在电力巡检领域,电表箱状态识别一直是计算机视觉技术落地的难点。传统人工巡检模式下,一个台区的200个电表箱需2名巡检员耗时1天完成,且受光线、天气影响,误判率常超过15%。而采用普通开源算法部署的自动识别系统,又面临箱体污渍遮挡、表计型号混杂、边缘计算设备算力有限等多重挑战,实际商用时mAP(平均精度)往往跌破70%,难以满足电力行业的可靠性要求技术解析:从传统方法到陌讯创新架构传统电表箱识别多采
- 强背光干扰拒识率↓82%!陌讯多模态融合算法在智慧安防的实战优化
摘要针对边缘计算优化在复杂光照场景的鲁棒性挑战,本文解析陌讯视觉算法的多模态融合架构。实测显示,在背光、遮挡等极端条件下较基线模型误报率降低82%,部署时延C(特征提取分支)B[红外输入]-->CC-->D{自适应融合模块}D-->E[动态决策引擎]E-->F[置信度分级输出]2.2核心算法实现动态特征聚合公式:Ffusion=∑i=1Nαi⋅ϕ(Vrgb⊕Tir)其中αi为光照强度自适应的权重系
- 强干扰下误报率↓85%!陌讯动态感知算法在工业消防的实战解析
2501_92473287
算法目标检测计算机视觉深度学习人工智能
摘要:针对工业场景明火烟雾检测的边缘计算优化,实测显示陌讯动态感知算法在强干扰环境下较基线模型误报率↓85%,
[email protected]达87.6%。一、行业痛点:工业消防的监测困境据《工业安全监测白皮书2025》统计,石化厂区因蒸汽干扰导致的火灾误报率高达38.7%[7]。核心挑战包括:光学干扰:高温蒸汽与金属反光产生伪烟雾特征形态多变:明火在通风环境下呈现非稳态扩散实时性要求:响应延迟>200ms将导致连
- 如何解决 undetected_chromedriver 启动慢问题
小马哥编程
chromeseleniumui
要解决undetected_chromedriver启动慢的问题,可以从以下几个方面优化配置和代码:1.指定本地Chrome二进制路径避免自动搜索Chrome路径,直接指定位置:driver=uc.Chrome(browser_executable_path=r'C:\ProgramFiles\Google\Chrome\Application\chrome.exe')2.禁用GPU和沙盒(关键优
- 从 0 到 1 精通 MQTT 协议
一叶飘零_sweeeet
果酱紫javaMQTT物联网
从0到1精通MQTT协议:Java开发者必看的物联网通信指南作为一名Javaer,你可能早已在分布式系统、微服务架构中摸爬滚打多年。但当面对物联网(IoT)、边缘计算等新兴领域时,是否曾被设备间的低带宽、高延迟通信难题困住?今天,我们要深入探讨的MQTT协议,正是解决这类问题的"瑞士军刀"。本文将从协议底层原理讲起,结合完整的Java实现案例,带你掌握从客户端开发到broker部署的全流程技能。无
- vLLM专题(三)-快速开始
AI专题精讲
大模型专题系列人工智能
本指南将帮助您快速开始使用vLLM执行:离线批量推理使用OpenAI兼容服务器进行在线服务1.先决条件操作系统:LinuxPython:3.9–3.122.安装如果您使用的是NVIDIAGPU,您可以直接使用pip安装vLLM。建议使用uv,一个非常快速的Python环境管理器,来创建和管理Python环境。请按照文档安装uv。安装uv后,您可以创建一个新的Python环境,并使用以下命令安装vL
- XCZU4EV-1FBVB900E Xilinx FPGA AMD Zynq UltraScale+ MPSoC EV(Embedded Vision)
XINVRY-FPGA
arm开发fpga开发fpga嵌入式硬件硬件工程计算机视觉硬件架构
XCZU4EV-1FBVB900EXCZU4EV‑2FBVB900E属于AMD(Xilinx)ZynqUltraScale+MPSoCEV(EmbeddedVision)系列,集成四核Arm®Cortex‑A53应用处理器、双核Cortex‑R5F实时处理器与Mali‑400MP2片上GPU,辅以强大的可编程逻辑和海量DSP引擎。该器件面向视频嵌入式视觉、网络通信、工业自动化和高级数据处理等对图形
- 数字经济时代全产业链详解
数字经济全产业链概述数字经济全产业链涵盖从底层技术到终端应用的完整生态,包括基础技术层、核心产业层、融合应用层和支撑服务层。以下是详细拆解:基础技术层1.硬件基础设施芯片与半导体:CPU、GPU、AI芯片(如NPU)等,支撑算力需求。通信设备:5G基站、光纤网络、卫星互联网等。数据中心:云计算服务器、边缘计算节点、绿色数据中心(如液冷技术)。2.软件与平台操作系统:鸿蒙、Windows、Linux
- 数据空间技术在智慧水库管理平台中的赋能
小赖同学啊
testTechnologyPrecious物联网
数据空间技术在智慧水库管理平台中的赋能:设备到应用的数据传输优化数据空间技术为智慧水库管理平台提供了革命性的数据传输、处理和安全保障能力。以下是数据空间技术在设备到应用数据传输过程中的全面赋能方案:数据空间赋能架构设计中心层区域层设备层数据预处理边缘计算本地决策协议转换数据聚合安全传输元数据管理数据治理访问控制数据服务长期存储业务应用系统数据分析平台数据仓库区域数据空间网关中心数据空间平台边缘数据
- 智慧水库边缘计算技术路线与框架设计
小赖同学啊
testTechnologyPrecious边缘计算人工智能
智慧水库边缘计算技术路线与框架设计一、边缘计算技术路线1.整体技术路线云边协同层边缘管理层边缘计算层边缘感知层设备层配置下发模型更新数据同步容器编排资源调度安全管理实时数据处理本地AI推理规则引擎协议适配数据采集设备管理水位计雨量计摄像头闸门传感器设备层边缘感知层边缘计算层边缘管理层云边协同层中心云平台2.关键技术演进路线阶段技术重点目标1.0基础建设期容器化部署、基础数据采集实现设备接入和基础数
- PHP 8.0 云原生与前沿技术深度整合(1)
jishujiaoliu1682
php开发语言
PHP8.0云原生与前沿技术深度整合目录云原生PHP架构ServerlessPHP实践AI/ML集成方案区块链与PHP物联网(IoT)开发边缘计算部署未来技术展望云原生PHP架构KubernetesOperator设计phpclassPhpAppOperator{private$k8sClient;publicfunction__construct(K8sClient$client){$this-
- 存算一体架构或成为AI处理器技术发展关键
神州问学
人工智能架构gpu算力算法语言模型
©作者|坚果来源|神州问学引言马斯克巨资60亿美元打造的“超级算力工场”,通过串联10万块顶级NVIDIAH100GPU,不仅震撼了AI和半导体行业,促使英伟达股价应声上涨6%,还强烈暗示了AI大模型及芯片需求的急剧膨胀。这一行动不仅是马斯克对AI未来的大胆押注,也成为了全球企业加速布局AI芯片领域的催化剂,预示着一场科技革新竞赛的全面升级,各方竞相提升算力,争夺AI时代的战略高地。观察近期Bla
- 下一代AI芯片设计的五大革命性突破:从架构创新到能效比跃迁——解析存算一体、Chiplet与光子计算的产业实践
像素笔记
杂谈单片机人工智能gpu算力Chiplet硬件架构
一、引言:AI算力竞赛进入“纳米级战争”2024年,全球AI芯片市场规模突破800亿美元,但传统冯·诺依曼架构的“内存墙”问题愈发凸显。英伟达H100GPU的算力虽达4PetaFLOPS,但其实际能效比仅有15%,大量功耗消耗在数据搬运而非计算本身(数据来源:ISSCC2024报告)。与此同时,特斯拉Dojo超算通过定制化架构,将训练成本降低至行业平均水平的1/5。本文将深入剖析AI芯片设计的五大
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio