- 代码随想录算法训练营第三十五天
01背包问题二维题目链接01背包问题二维题解importjava.util.Scanner;publicclassMain{publicstaticvoidmain(String[]args){Scannersc=newScanner(System.in);intM=sc.nextInt();intN=sc.nextInt();int[]space=newint[M];int[]value=new
- 算法刷题-动态规划之背包问题
1.背包问题之01(4.30)题目描述小明有一个容量为VV的背包。这天他去商场购物,商场一共有NN件物品,第ii件物品的体积为wiwi,价值为vivi。小明想知道在购买的物品总体积不超过VV的情况下所能获得的最大价值为多少,请你帮他算算。输入描述输入第11行包含两个正整数N,VN,V,表示商场物品的数量和小明的背包容量。第2∼N+12∼N+1行包含22个正整数w,vw,v,表示物品的体积和价值。1
- 用动态规划方法求解0-1背包问题
逢着
算法动态规划算法c++
如果你对动态规划方法求解0-1背包问题的思路不清晰,直接阅读代码并不是一个好的建议。推荐一个B站up主的视频讲解:0/1背包问题-动态规划练习地址(B站视频配套的网址)#includeusingnamespacestd;constintbagVolume=6;//背包体积constintitemNumber=4;//准备放入的物品数量constintrows=itemNumber+1;//tabl
- 背包DP之树形背包(有依赖的背包)
GG不是gg
数据结构与算法分析#算法分析与设计动态规划
背包DP之树形背包-有依赖的背包一、树形背包基础认知1.1问题定义1.2核心特征二、树形背包的状态设计与递推2.1状态定义2.2递推关系2.3树的遍历顺序三、代码实现3.1数据结构定义3.2代码解析四、实例推演(以示例为例)4.1树结构4.2后序遍历处理五、时间复杂度与优化5.1时间复杂度5.2优化技巧六、树形背包的变种与应用6.1变种问题6.2应用场景背包问题中,0/1背包、完全背包等基础模型假
- 【动态规划】背包dp
算法阿诺
动态规划动态规划算法
青春没有售价,dp速学一下。参考文章01背包在01背包问题中,每个物品只能放一次进背包。dp[i][j]dp[i][j]dp[i][j]:第i个物品,j容量状态转移公式:f[i][j]=max(f[i−1][j],f[i−1][j−w[i]]+pri[i])f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+pri[i])f[i][j]=max(f[i−1][j],f[i−1
- 20250725题解
关注我立刻回关
算法
首页排名提交记录题目列表测试比赛教师频道正版书籍关于1267:【例9.11】01背包问题时间限制:1000ms内存限制:65536KB提交数:71918通过数:43491【题目描述】一个旅行者有一个最多能装MM公斤的背包,现在有nn件物品,它们的重量分别是W1,W2,...,WnW1,W2,...,Wn,它们的价值分别为C1,C2,...,CnC1,C2,...,Cn,求旅行者能获得最大总价值。【
- 零基础数据结构与算法——第五章:高级算法-贪心算法-分数背包&霍夫曼编码
qqxhb
零基础数据结构与算法小学生编程算法算法贪心算法分数背包霍夫曼
5.2.2经典贪心算法问题(下)分数背包问题问题描述:有n个物品,每个物品有重量和价值。现在有一个容量为W的背包,每个物品可以取部分,求解如何选择物品放入背包,使得背包中物品的总价值最大。贪心解法:按照物品的单位价值(价值/重量)排序,优先选择单位价值高的物品。publicstaticdoublefractionalKnapsack(int[]weights,int[]values,intcapa
- C# 实现:动态规划解决 0/1 背包问题
江沉晚呤时
C#算法代理模式.netcorec#microsoft.net.netcore算法
在生活中,我们经常面临选择和优化的问题。例如:在有限的资源(如时间、金钱、空间等)下,如何选择最有价值的物品?背包问题(KnapsackProblem)就是一种经典的优化问题,广泛应用于项目选择、投资决策、行李打包等领域。今天,我们将深入探讨0/1背包问题,并通过动态规划方法给出一种高效的解决方案。0/1背包问题0/1背包问题的基本描述是:给定一个容量为C的背包。有n个物品,每个物品有一个重量w[
- 0-1背包问题(洛谷P1048采药)
题目描述辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。为此,他想拜附近最有威望的医师为师。医师为了判断他的资质,给他出了一个难题。医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”如果你是辰辰,你
- 华为OD机试专栏--1.3 算法基础:1.3.3 动态规划入门
xiaoheshang_123
华为OD机试真题题库解析华为od面试职场和发展算法
目录1.3算法基础1.3.3动态规划入门一、动态规划的核心思想1.1什么是动态规划?1.2动态规划的特点二、动态规划的基本步骤三、经典动态规划问题3.1斐波那契数列(FibonacciSequence)问题描述动态规划解法代码实现(Python)3.2背包问题(KnapsackProblem)问题描述动态规划解法代码实现(Python)3.3最长公共子序列(LongestCommonSubsequ
- 动态规划、背包问题入门
2303_Alpha
动态规划代理模式算法笔记c语言
目录1、动态规划定义2、数塔问题题目描述:思路:代码实现:3、最长有序子序列问题描述:代码实现:动态规划基本思想特点4、背包问题①01背包问题空间复杂度优化②完全背包③多重背包二进制优化④二维费用背包1、动态规划定义动态规划是一种用于解决优化问题的算法策略,它的核心是把一个复杂的问题分解为一系列相互关联的子问题,并通过求解子问题的最优解来构建原问题的最优解。它将一个问题分解为若干个子问题,然后从最
- 【华为od刷题(C++)】HJ16 购物单(动态规划、0-1 背包问题、二维数组)
我的代码:#include#include#include//包含向量库,程序中的数据结构主要使用了vector来存储和处理数据usingnamespacestd;intmain(){intN,m;//N是背包的容量(单位是10),m是物品的数量cin>>N>>m;vector>v(m+1,vector(3,0));/*该行代码创建了一个二维vector,总共有m+1行,每行有3个元素,且每个元素
- 【牛客刷题HJ16】购物单
the_sunshine6
牛客华为机试动态规划java算法动态规划intellij-idea
目录一、题目描述二、题目分析1、题目理解2、题目分析(1)首先,将物品类准备好(2)然后,对v、p、q进行初始化(3)对动态规划数组进行赋值(填表)三、总结一、题目描述来源:购物单_牛客题霸_牛客网二、题目分析该题类似于0-1背包问题,关于0-1背包请看0-1背包-动态规划算法_哔哩哔哩_bilibili1、题目理解1、购买附件必须买主件,且一个主件最多有两个附件,每件物品只能购买一次;2、每件物
- 牛客:HJ16 购物单【01背包】【华为机考】
呆呆的小鳄鱼
#牛客华为机考#动态规划华为算法
学习要点深入理解回溯深入理解01背包问题题目链接购物单_牛客题霸_牛客网题目描述解法1:回溯其实此题非常符合取子集的逻辑,但是时间复杂度太高。通过11/14。想写出来这个回溯过程,不容易。#include#include#includeusingnamespacestd;intmoney;//有多少钱intmax_value=0;//礼物最终的最大价值boolcheck[66];voiddfs(v
- 01背包问题的一维数组解法
核心思想:fori:=1toNdoforj=Vdowntoc[i]doiff[j-c[i]]+w[i]>f[j]thenf[j]=f[j-c[i]]+w[i];背包问题九讲-P010-1背包问题在讲背包问题的时候老师说这是一个老鸟中的老鸟总结的,很全面也很简洁易懂,在此把内容贴上来,供大家一起交流学习。感谢原作者!题目有N件物品和一个容量为V的背包。第i件物品的费用是c[i],价值是w[i]。求解
- 算法练习-02
亮亮爱刷题
算法数据结构c++
今天给大家带来的是第二天的几道练习题,包括几道思路特别巧妙的算法题,以及提升的背包问题,相信这类问题对大家算法能力的提升还是十分有帮助的,希望大家学完可以给博主点一个关注。第一题:问题描述给定一个长度为n的数组a,小蓝希望从数组中选择若干个元素(可以不连续),并将它们重新排列,使得这些元素能够形成一个先严格递增然后严格递减的子序列(可以没有递增部分或递减部分)。你需要求出在满足这个条件下,最多可以
- 动态规划之01背包问题
蓝澈1121
数据结构与算法动态规划算法java
动态规划算法动态规划算法介绍动态规划(DynamicProgramming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法动态规划算法与分治法类似,其基本思想也是将待解决问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解与分治法不同的是,适合于动态规划求解的问题。经分解得到子问题往往不是互相独立的。(即下一个子阶段的求解是建立在上一个子阶段的基
- MATLAB动态规划算法详解及实例代码动态规划
爱玩三国杀的界徐盛
算法matlab动态规划
动态规划(DynamicProgramming,DP)是解决复杂优化问题的一种高效算法,核心思想是将问题分解为重叠子问题,通过记忆化存储避免重复计算。本文以经典的**0-1背包问题**为例,详细讲解如何在MATLAB中实现动态规划算法,并提供完整代码和解析。一、问题描述:0-1背包问题输入:物品重量`weights=[2,3,4,5]`,物品价值`values=[3,4,5,6]`,背包容量`ca
- 动态规划之01背包与完全背包 (简单易懂)
zmuy
动态规划动态规划算法c语言
一、01背包01背包是在N件物品取出若干件放在空间为M的背包里,使得所装物品价值最大。每件物品的体积为W[1],W[2]~W[N],与之相对应的价值为V[1],V[2]~V[N]。同时还需要M个背包F[1],f[2]~f[M],空间依次为1,2~M,其值表示相应空间的背包当前所装物品的最大价值。(后面会解释为何需要M个背包)01背包是背包问题中最简单的问题。01背包的约束条件是给定几种物品,每种物
- 贪心算法详解:理解贪心算法看这一篇就够了
爪哇学长
Java编程基础及进阶贪心算法算法javapython
文章目录1.贪心算法的基础理论1.1什么是贪心选择性质1.2证明贪心选择性质2.设计步骤2.1定义问题和目标2.2确定数据结构2.3排序和选择策略2.4迭代与决策2.5终止条件3.实例详解3.1活动选择问题3.2分数背包问题3.3最小生成树(Kruskal算法)1.贪心算法的基础理论1.1什么是贪心选择性质贪心选择性质是指一个全局最优解可以通过一系列局部最优的选择构建出来。这意味着在做出每个选择时
- 详解 0-1 背包问题的动态规划解法
引言0-1背包问题是动态规划领域经典入门题型,广泛应用于资源分配、货物装载、投资组合优化等场景。核心矛盾是在“选与不选”的二元决策中,让有限容量背包承载最大价值。本文用动态规划五部曲拆解问题,结合Java代码实现与实例推导,带你透彻掌握解法!一、0-1背包问题定义问题描述现有n个物品,每个物品包含重量weight[i]和价值value[i]两个属性;背包最大容量为C。每个物品只能选一次(选记为1,
- 代码随想录算法训练营第38天 | 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结
ohnoooo9
代码随想录算法训练营打卡算法
322.零钱兑换如果求组合数就是外层for循环遍历物品,内层for遍历背包。如果求排列数就是外层for遍历背包,内层for循环遍历物品。钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?|LeetCode:322.零钱兑换_哔哩哔哩_bilibili代码随想录classSolution{publicintcoinChange(int[]
- 01背包问题(闫氏DP分析法)
whx_0612
leetcode动态规划算法java
01背包问题原题链接:https://www.acwing.com/problem/content/2/有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数vi,wi,用空格隔
- 动态规划DP问题(闫氏dp分析法+典例背包问题yxc讲解)
好喜欢吃红柚子
蓝桥杯动态规划c++蓝桥杯算法
1.DP问题总体分析我们需要找到的所有解是一个集合,由于需要考虑的数值涉及到物品数量i和背包重量j,所以使用一个二维数组f[i][j]来记录f[i][j]的含义是是从当前i个物品中选取物品加入背包,且物品总体积不超过j的物品最大价值最后的f[n][m]就是将n件物品装入背包时重量不超过m时的物品价值的最大值2.状态计算时的集合划分
- 贪心算法:用C++玩转最优解的艺术(实战宝典)
digitalpath
贪心算法c++算法其他
文章目录一、这个算法有点"贪"!二、什么时候该"贪"?1.高频应用场景(敲黑板!)2.适用条件(超级重要!)三、C++实战:背包问题经典案例:部分背包问题贪心策略代码实现代码解读(重点!)四、为什么有人骂它"目光短浅"?贪心算法的局限性避坑指南(亲测有效!)五、进阶技巧:如何设计自己的贪心策略3大设计方向实战心得(血泪经验)六、面试必问:贪心vs动态规划对比表格(背下来!)七、你以为这就结束了?一
- 代码随想录训练营Day33:完全背包问题2
mooc666quq
代码随想录训练营打卡算法leetcodeC++学习动态规划
1.322零钱兑换与昨天的零钱兑换问题的区别主要不同点在于dp数组的含义,相同点都是属于组合问题。1.dp数组的含义:dp[j]:代表容量为j时候的最少零钱个数2.递推公式:dp[j]=min(dp[j],dp[j-coins[i]]+1);dp[j-coins[i]]+1=dp[j-weight[i]]+value[i],所以还是属于一个变式。因为题目要求的是最小个数,所以得取min函数。3.初
- 贪心算法经典问题
弥彦_
c++算法c++
目录贪心思想一、Dijkstra最短路问题问题描述:贪心策略:二、Prim和Kruskal最小生成树问题Prim算法:Kruskal算法:三、Huffman树问题问题描述:贪心策略:四、背包问题问题描述:贪心策略:五、硬币找零问题问题描述:贪心策略:六、区间合并问题问题描述:贪心策略:七、选择不相交区间问题问题描述:贪心策略:八、区间选点问题问题描述贪心策略九、区间覆盖问题问题描述:贪心策略:十、
- 01背包问题详解c++【泪光2929】
泪光2929
【泪光2929】代码仓c++开发语言
01背包问题详解01背包是一种动态规划问题。动态规划的核心就是状态转移方程,本文主要解释01背包状态转移方程的原理。问题描述01背包问题可描述为如下问题:有一个容量为V的背包,还有n个物体。现在忽略物体实际几何形状,我们认为只要背包的剩余容量大于等于物体体积,那就可以装进背包里。每个物体都有两个属性,即体积w和价值v。问:如何向背包装物体才能使背包中物体的总价值最大?为什么不用贪心?我在第一次做这
- 深入理解背包问题:从理论到实践
a.原味瓜子
C++算法人工智能
目录一、什么是背包问题?基本概念二、背包问题的常见类型1.0-1背包问题2.完全背包问题3.多重背包问题4.分数背包问题三、0-1背包问题的动态规划解法1.基本思路2.C++实现代码3.空间优化版本四、完全背包问题的解法1.基本思路2.C++实现代码五、背包问题的实际应用六、经典例题与解答例题1:分割等和子集(LeetCode416)例题2:目标和(LeetCode494)七、背包问题的优化技巧八
- P1064 [NOIP 2006 提高组] 金明的预算方案——依赖背包
VU-zFaith870
洛谷题解动态规划DP背包DP依赖背包C++算法
背景弱化版入题之前,先看看弱化版【开心的金明】对于这道题,比平常所作的01背包多了一个重要度。但仔细想想,背包问题主要是考虑价值与空间的比值(即性价比)。只需将原物品价值乘以重要度即可。dp[j]=max(dp[j],dp[j−价值]+贡献)dp[j]=max(dp[j],dp[j−价值]+贡献)dp[j]=max(dp[j],dp[j−价值]+贡献)弱化CodeCodeED://算法:01背包/
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep