- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- 语音识别开源项目推荐:GitHub热门仓库盘点
AGI大模型与大数据研究院
AI大模型应用开发实战语音识别开源githubai
2024年必看!GitHub热门语音识别开源项目全解析:从入门到实战关键词语音识别(ASR)、开源项目、GitHub、Whisper、FunASR、PaddleSpeech、深度学习摘要想象一下:开车时只需说一句话就能自动发消息,听英文演讲时实时获得中文翻译,给视障人士读文本时精准转换——这些场景的背后,语音识别(AutomaticSpeechRecognition,ASR)技术正在改变我们与机器
- 从0构建 HarmonyOS 本地语音识别项目:Whisper 完整落地教程
观熵
国产大模型部署实战全流程指南harmonyos语音识别whisper深度学习机器学习
第一章:鸿蒙手机语音识别项目实战(基于Whisper本地推理)项目目标:构建一个可以在鸿蒙系统手机本地运行的语音识别应用,使用Whisper模型识别用户语音为文字,全程无需联网。1.为什么要在鸿蒙手机本地部署语音识别?在很多移动场景下(驾驶、弱网环境、隐私敏感场景等),云端语音识别存在如下痛点:⏳网络延迟高、体验割裂⚠️数据隐私风险大网络依赖强,弱网/无网直接无法使用而将语音识别模型部署在鸿蒙设备
- 19|Whisper+ChatGPT:请AI代你听播客
_Rye_
AI大模型whisperchatgpt
今天,我们的课程开始进入一个新的主题了,那就是语音识别。过去几周我们介绍的ChatGPT虽然很强大,但是只能接受文本的输入。而在现实生活中,很多时候我们并不方便停下来打字。很多内容比如像播客也没有文字版,所以这个时候,我们就需要一个能够将语音内容转换成文本的能力。作为目前AI界的领导者,OpenAI自然也不会放过这个需求。他们不仅发表了一个通用的语音识别模型Whisper,还把对应的代码开源了。在
- 剖析AI人工智能领域Whisper的性能指标
AI大模型应用实战
人工智能whisperxcodeai
剖析AI人工智能领域Whisper的性能指标关键词:Whisper、语音识别、性能指标、ASR、AI模型评估、基准测试、语音转文本摘要:本文深入剖析OpenAI开发的Whisper语音识别系统的性能指标。我们将从技术原理、架构设计、性能基准测试等多个维度,全面分析Whisper在不同场景下的表现。文章将详细讲解Whisper的评估方法、关键性能指标解读、实际应用中的性能表现,以及与其他主流语音识别
- 音频转文字-在线工具包及使用记录
一笑code
音频转文字
资料来源:https://zhuanlan.zhihu.com/p/269603431(多种方案)视频教程:https://www.youtube.com/watch?v=L1H5ov4WTBghttps://github.com/openai/whisper//创建虚拟环境python-mvenvmyvnev//激活虚拟环境sourcemyvnev/bin/activatepipinstall-
- 《Whisper模型版本及下载链接》
空云风语
人工智能深度学习神经网络whisper
Whisper模型版本及下载链接Whisper是OpenAI开发的语音识别模型,以下按模型规模从小到大排列,包含不同语言版本及通用版本:1.Tiny系列(轻量级)tiny.en.pt(英文专用):https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d
- 《Whisper:开启语音识别新时代的钥匙》
空云风语
人工智能深度学习神经网络whisper语音识别人工智能
Whisper模型:技术革新的基石在当今科技飞速发展的时代,自动语音识别(ASR)技术作为人工智能领域的关键分支,正深刻地改变着人们的生活与工作方式。从智能语音助手到实时字幕生成,从语音交互设备到智能客服系统,ASR技术无处不在,为人们带来了前所未有的便利与效率提升。而Whisper模型,作为ASR技术中的一颗璀璨明星,以其卓越的性能和独特的技术架构,成为了推动语音识别技术发展的重要力量。Whis
- web3.js 核心包及子模块
阿雄不会写代码
付费刊栏一个收费的FISCOBCOS栏目web3
.核心包(web3)功能:提供基础连接、工具函数和核心功能。包含子模块:web3.eth-以太坊区块链交互web3.utils-辅助工具函数web3.shh-Whisper协议(已废弃)web3.bzz-Swarm去中心化存储(已废弃)web3.net-网络相关功能web3.contract-智能合约交互web3.accounts-账户管理web3.personal-账户管理(已废弃,推荐使用we
- 19|Whisper+ChatGPT:请AI代你听播客
企鹅侠客
AI大模型之美whisperchatgpt人工智能AI
今天,我们的课程开始进入一个新的主题了,那就是语音识别。过去几周我们介绍的ChatGPT虽然很强大,但是只能接受文本的输入。而在现实生活中,很多时候我们并不方便停下来打字。很多内容比如像播客也没有文字版,所以这个时候,我们就需要一个能够将语音内容转换成文本的能力。作为目前AI界的领导者,OpenAI自然也不会放过这个需求。他们不仅发表了一个通用的语音识别模型Whisper,还把对应的代码开源了。在
- ✨Whisper 官方版本离线安装及断点续传下载 + screen 后台管理全流程指南
杨靳言先
python人工智能whisper
Whisper官方版本离线安装及断点续传下载+screen后台管理全流程指南Whisper是OpenAI开源的强大语音识别模型,支持多语言转写。本文详细介绍如何在Linux环境下离线安装官方Whisper,如何利用断点续传安全下载大模型,结合screen工具实现后台任务管理,避免断线烦恼。一、环境准备️Whisper依赖Python3和ffmpeg,另外用到wget断点续传和screen任务管理。
- Whisper(语音识别,语音转文本)本地部署
龚子亦
虚拟数字人制作whisper语音识别人工智能
一、安装好ffmpeg1、安装ffmpeg,这个好像是用于对音频文件解析和处理的,具体不态清楚ffmpeg安装教程2、后面可能出现的问题如果后面运行时,出现系统找不到指定文件的bug时,尝试在上一步添加环境变量中,也添加一个系统变量,并重启一下电脑二、使用Anaconda创建所需的环境1、创建一个新的环境condacreate-nwhisperpython=3.92、判断自己的设备使用什么版本的C
- whisper相关的开源项目 (asr)
code-ranger
AI多媒体whisperasr
基于Whisper(OpenAI的开源语音识别模型)的开源项目有很多,涵盖了不同应用场景和优化方向。以下是一些值得关注的项目:1.核心工具&增强版WhisperOpenAIWhisper由OpenAI开源的通用语音识别模型,支持多语言转录和翻译,基于PyTorch实现。faster-whisper使用CTranslate2加速推理,支持CPU/GPU,速度比原版快4倍,内存占用更低。适合需要高效部
- Whisper使AI人工智能语音识别更精准可靠
AI天才研究院
AI大模型企业级应用开发实战人工智能whisper语音识别ai
Whisper使AI人工智能语音识别更精准可靠关键词:Whisper、语音识别、AI模型、自动语音识别(ASR)、深度学习、Transformer、语音处理摘要:本文深入探讨了OpenAI开发的Whisper语音识别系统如何通过创新的深度学习架构显著提升语音识别的准确性和可靠性。我们将从技术原理、模型架构、实现细节到实际应用场景,全面分析Whisper如何克服传统语音识别系统的局限性,以及它为何成
- AIGC 与 Whisper:推动语音技术进步
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶AIGCwhisperai
AIGC与Whisper:推动语音技术进步关键词:AIGC(生成式人工智能)、Whisper、语音识别、多模态交互、大语言模型、语音合成、多任务学习摘要:本文深度解析生成式人工智能(AIGC)与OpenAI开源的Whisper语音识别系统如何协同推动语音技术进步。通过剖析AIGC的生成能力与Whisper的多语言、多任务处理优势,结合技术原理、算法细节、实战案例与应用场景,揭示两者在语音理解、合成
- 【仿生系统】qwen的仿生机器人解决方案
DFminer
机器人
收到完整需求后,我将从系统架构设计、算法实现路径、训练方法三个维度为您构建完整的仿生机器人解决方案。以下是分阶段实施方案:一、核心系统架构设计(模块化可进化架构)1.多模态感知引擎-视觉子系统:YOLOv8+SAM组合实现实时物体检测+场景语义分割-听觉子系统:Whisper+SpeakerEmbedding+情感识别三重处理-语言理解:基于LLaMA3的增量式语义解析(IncrementalPa
- openai-whisper-asr-webservice接入dify
dgiij
whispernode.jsaidocker
openai-whisper-asr-webservice提供的asr的api其实并不兼容openai的api,所以在dify中是不能直接添加到语音转文字的模型中,对比了下两个api的传参情况,其实只要改动一处,就能支持:openai兼容的asr调用中formdata中音频文件是file=XXX这样的,而openai-whisper-asr-webservice提供的asr的api中formdat
- 开源音视频转文字工具:基于 Vosk 和 Whisper 的多语言语音识别项目
phper8
音视频whisper语音识别
背景介绍随着短视频、播客等音视频内容的爆发式增长,快速将音视频内容转换为文字的需求也越来越大。无论是内容创作者需要的字幕,还是企业需要的会议记录,都需要一个可靠的语音转文字解决方案。技术架构本项目采用双引擎架构,结合了两个优秀的开源语音识别模型:Vosk:专注于离线场景,适合本地快速处理Whisper:OpenAI开源的强大模型,支持多语言识别核心特性多语言支持中文识别:适配中文语音特点英文识别:
- AIGC 技术解析:Whisper 的低延迟语音识别
AI大模型应用之禅
AIGCwhisper语音识别
AIGC技术解析:Whisper的低延迟语音识别关键词:AIGC、Whisper、语音识别、低延迟、Transformer、端到端学习、语音处理摘要:本文深入解析OpenAIWhisper模型的低延迟语音识别技术。我们将从语音识别的基本原理出发,详细探讨Whisper的架构设计、核心算法、数学模型以及实现细节。文章包含完整的Python代码示例,展示如何在实际项目中应用Whisper进行低延迟语音
- uDistil-Whisper:低数据场景下基于无标签数据过滤的知识蒸馏方法
tongxianchao
人工智能机器学习深度学习
uDistil-Whisper:Label-FreeDataFilteringforKnowledgeDistillationinLow-DataRegimes会议:2025年NAACL机构:卡内基梅降大学Abstract近期研究通过伪标签(pseudo-labels)将Whisper的知识蒸馏到小模型中,在模型体积减小50%的同时展现出优异性能,最终得到高效、轻量的专用模型。然而,基于伪标签的蒸
- 在 React Native 中使用 Whisper 进行语音识别
pxr007
reactnativewhisper语音识别
在本文中,我们将使用Whisper创建语音转文本应用程序。Whisper需要Python后端,因此我们将使用Flask为应用程序创建服务器。ReactNative作为构建移动客户端的框架。我希望您喜欢创建此应用程序的过程,因为我确实这样做了。让我们直接深入研究它。什么是语音识别?语音识别使程序能够将人类语音处理成书面格式。语法、句法、结构和音频对于理解和处理人类语音至关重要。语音识别算法是计算机科
- Whisper在AI人工智能多语言语音识别中的应用
AI智能探索者
人工智能whisper语音识别ai
Whisper在AI人工智能多语言语音识别中的应用关键词:Whisper、AI人工智能、多语言语音识别、应用、技术原理摘要:本文深入探讨了Whisper在AI人工智能多语言语音识别中的应用。首先介绍了相关背景,包括语音识别技术的发展以及Whisper出现的意义。接着详细阐述了Whisper的核心概念、算法原理、数学模型等内容。通过项目实战展示了Whisper在实际中的应用,包括开发环境搭建、代码实
- 实时语音转文字(基于NAudio+Whisper+VOSP+Websocket)
htsitr
whisper
今天花了大半天时间研究一个实时语音转文字的程序,目的还包括能够唤醒服务,并把命令提供给第三方。由于这方面的材料已经很多,我就只把过程中遇到的和解决方案简单说下。源代码开源在AudioWhisper:实时语音转文字(基于NAudio+Whisper+VOSP+Websocket)(gitee.com)1、声音录制这里有三点需要注意的:1)sampleRate(采样频率)要选择16000,不要选别的,
- 【语音识别】vLLM 部署 Whisper 语音识别模型指南
Encarta1993
语音语音识别whisper人工智能
目录1.模型下载2.环境安装3.部署脚本4.服务测试语音识别技术在现代人工智能应用中扮演着重要角色,OpenAI开源的Whisper模型以其出色的识别准确率和多语言支持能力成为当前最先进的语音识别解决方案之一。本文将详细介绍如何使用vLLM(一个高效的大模型推理和服务框架)来部署Whisper-large-v3-turbo模型,构建一个可扩展的语音识别API服务。vLLM是专为大规模语言模型推理优
- python系列&deep_study系列:Whisper OpenAI开源语音识别模型
坦笑&&life
AI系列pythonwhisper语音识别
WhisperOpenAI开源语音识别模型WhisperOpenAI开源语音识别模型介绍一、Whisper模型及配置Whisper参数评测数据模型测试表原始模型字错率测试表。微调[AIShell](https://openslr.magicdatatech.com/resources/33/)数据集后字错率测试表。未加速和加速后的推理速度测试表,使用GPU为GTX3090(24G)。经过处理的数据
- 实战指南:封装Faster-Whisper为FastAPI接口并实现高并发处理-附整合包
@程序员小袁
AI大模型开源项目whisperfastapipython
实战指南:封装Faster-Whisper为FastAPI接口并实现高并发处理-附整合包「faster-whisper」链接:https://pan.quark.cn/s/d4ddffb1b196标题下面提供一个完整的示例,说明如何使用FastAPI封装faster-whisper接口,对外提供RESTAPI服务,并支持一定的并发调用。在这个示例中,我们将使用faster-whisper的Pyth
- Whisper 模型压缩技术:轻量级语音识别方案
AI学长带你学AI
CSDNwhisper语音识别人工智能ai
Whisper模型压缩技术:轻量级语音识别方案关键词:Whisper模型、模型压缩、轻量级语音识别、知识蒸馏、模型量化、剪枝优化、边缘部署摘要:本文深入探讨OpenAIWhisper模型的压缩技术体系,系统解析模型量化、结构剪枝、知识蒸馏等核心技术原理。通过数学建模分析压缩过程中的精度-效率平衡问题,结合PyTorch实战案例演示端到端压缩流程。重点阐述如何在保持语音识别精度的前提下,将Whisp
- 开源项目faster-whisper和whisper是啥关系
@程序员小袁
开源项目AI大模型whisper
OpenAIWhisper是OpenAI开源的一款通用语音识别模型,经过在大规模语音数据集(包含680,000小时监督数据)的训练,支持99种语言的识别、翻译及语言识别任务。它在准确率方面表现出色,但同时其参数众多、计算资源占用较大,常常需要GPU才能较快运行;如果直接在CPU上使用,则运行速度较慢,并且在处理长音频时容易出现“幻听”问题(模型生成冗余或不恰当的转写)。faster‑whisper
- 使用faster-whisper音频转srt字幕(亲测可行)
批量小王子
05_python库whisper音视频python
重点说明,下载模型时需科学上网或者用国内huggingface镜像网站下载。fromfaster_whisperimportWhisperModelfrompydubimportAudioSegmentfromzhconvimportconvert#简繁转换库importosimportdatetimeimporttorchdefformat_time(seconds):"""将秒数格式化为SRT
- 多语种语音识别新突破:使用Transformers微调Whisper模型,实现精准识别!
大模型入门学习
语音识别whisper人工智能AI产品经理职场和发展大模型Transformer
前言本文提供了一个使用HuggingFaceTransformers在任意多语种语音识别(ASR)数据集上微调Whisper的分步指南。同时,我们还深入解释了Whisper模型、CommonVoice数据集以及微调等理论知识,并提供了数据准备和微调的相关代码。简介Whisper是一系列用于自动语音识别(automaticspeechrecognition,ASR)的预训练模型,它由来自于OpenA
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不