- 2025最新Mybatis-plus教程(二)
三、CRUD(一)BaseMapper接口方法介绍BaseMapper中提供了crud方法,具体方法如下://插入一条记录intinsert(Tentity);//根据entity条件,删除记录intdelete(@Param(Constants.WRAPPER)Wrapperwrapper);//删除(根据ID批量删除)intdeleteBatchIds(@Param(Constants.COL
- MyBatisPlus 批量添加
文章目录现状优化效果报错现状一般来说,批量插入可以使用MyBatisPlus中ServiceImpl自带的方法saveBatch打开sql日志,application.yml添加配置,mapper-locations配置mapper路径mybatis-plus:configuration:log-impl:org.apache.ibatis.logging.stdout.StdOutImpl#开启
- 3D并行与4D并行
3D并行3D并行通常指的是将以下三种并行策略结合起来:D1:数据并行(DataParallelism)D2:张量并行(TensorParallelism)D3:流水线并行(PipelineParallelism)各个“D”的含义及详细讲解1.数据并行(DataParallelism)含义:在数据并行中,每个设备(或一组设备)都持有完整的模型副本。训练数据集被分成多个批次(mini-batches)
- 第十四章:AI的数据“集装箱”:彻底搞懂Tensor的Batch与维度
爱分享的飘哥
AI新纪元:120日觉醒计划TensorPyTorchBatchSize数据处理AI基础深度学习教程
AI数据集中箱前言:为什么AI从不“零售”,总是“批发”?1:Batch(批次)——GPU的“灵魂伴侣”1.1单个处理vs.批量处理:CPU与GPU的思维差异1.2DataLoader:PyTorch的“自动化装箱员”2:维度的语言——破译[B,L,D]的含义2.1[L,D]:一个句子的“二维画像”2.2[B,L,D]:一批句子的“三维魔方”2.3用代码直观感受维度的增加3:追踪Tensor的“变
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- 基于深度学习的胸部 X 光图像肺炎分类系统(二)
本文主要说明神经网络的构建,共21个层级defbuild_model(input_shape): model=models.Sequential([ layers.Conv2D(32,(3,3),activation='relu',input_shape=input_shape), layers.BatchNormalization(), layers.Ma
- 作业11.23
zhuqifan0412
网络
syssystem-viewEntersystemview,returnuserviewwithCtrl+Z.[Huawei]vlanba[Huawei]vlanbatch24Info:Thisoperationmaytakeafewseconds.Pleasewaitforamoment...done.[Huawei]Nov23202220:22:23-08:00HuaweiDS/4/DATAS
- 基础NLP | 01 机器学习 深度学习基础介绍
是娜个二叉树!
NLP自然语言处理机器学习深度学习
文章目录机器学习简介有监督学习无监督学习一般流程常用概念深度学习简介隐含层/中间层例子and流程如果想要猜测的又快又准,调整的方向有哪些?随机初始化损失函数导数与梯度梯度下降优化器MiniBatchepoch流程深度学习的基本思想机器学习简介有监督学习核心目标:建立一个模型(函数),来描述输入(X)和输出(Y)之间的映射关系价值:对于新的输入,通过模型给出预测的输出要点:有一定数量的训练样本输入和
- ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 384]
我是如此相信_
人工智能深度学习
这个错误通常发生在使用PyTorch训练神经网络时,输入数据维度不符合预期,不能batch_size整除。可能是输入的数据有剩余但不足以达到batch_size所导致的查阅资料发现:在torch.utils.data这个包中,DataLoader类下有一参数为:drop_last–settoTruetodropthelastincompletebatch,ifthedatasetsizeisnot
- 基于 Spring Batch 和 XXL-Job 的批处理任务实现
躲在没风的地方
javaspringbootspringbatchjava
springbatchspringinteger批处理作业1添加依赖org.springframework.batchspring-batch-integration你的SpringBatch版本org.springframework.batchspring-batch-core你的SpringBatch版本org.springframework.integrationspring-integra
- SAP中BDC的模式
小赫不吃姜
abapsap开发语言
SAPBDC(BatchDataCommunication)中的执行模式在SAP的BDC技术中,有三种主要的执行模式,它们决定了事务如何被处理以及错误如何被管理:1.A(DisplayMode)-显示模式●含义:系统会显示每个屏幕,但不会自动处理●特点:○允许用户手动输入或确认数据○主要用于测试和调试BDC会话○不会实际更新数据库●适用场景:BDC程序开发和测试阶段2.E(ErrorMode)-错
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- UE5 Microsoft.MakeFile.targets(44, 5): [MSB3073] 代码为6.报错解决
Microsoft.MakeFile.targets(44,5):[MSB3073]命令“E:\EpicGame\UE_5.1\Engine\Build\BatchFiles\Build.batAAAAAEditorWin64Development-Project=“D:\UE4Game\AAAAA\AAAAA.uproject”-WaitMutex-FromMsBuild”已退出,代码为6。出错
- 绿色免装 OFD 批量打印小工具:快捷键搞定 OFD 打印,解决右键无选项难题
维度软件库
电脑开源软件测试工具
各位办公小能手们!今天咱来聊聊批量打印工具,这玩意儿可太牛啦!软件下载地址安装包批量打印工具就是那种能高效处理好多文件打印任务的软件。它的核心功能超厉害,只要一键操作或者自动化流程,就能批量打印PDF、Word、Excel、CAD图纸、OFD这些不同格式的文件。你就不用一个一个打开文件手动打印啦,能省老多事儿,打印效率蹭蹭往上涨!像PrintConductor、BatchPrintPro这种通用文
- mac的m芯片上跑cuda程序
xinxuann
macos
config里parser.add_argument('--device',type=str,default='mps')main里device=torch.device(cfg['device'])train里x_batch=x_batch.astype('float32')y_batch=y_batch.astype('float32')aux_batch=aux_batch.astype('
- flink sql读hive catalog数据,将string类型的时间戳数据排序后写入kafka,如何保障写入kafka的数据是有序的
fzip
Flinkflinksqlhive
在FlinkSQL中,要确保从Hive读取的STRING类型时间戳数据排序后有序写入Kafka,需要结合批处理模式、时间类型转换、单分区写入和Kafka生产者配置。以下是完整解决方案:一、核心解决方案1.批处理模式+全局排序将作业设置为批处理模式,并对字符串时间戳进行类型转换后排序:--设置为批处理模式(关键!)SET'execution.runtime-mode'='batch';--从Hive
- Java框架入门——SpringBoot框架
初尘屿风
java初尘屿风SpringBootjavaspringspringbootmavenvue
文章目录前言一、SpringBoot是什么?二、请求与响应介绍二、springBoot之helloWorld总结前言Spring都包含了哪些部分呢?主要包含SpringBoot、SpringFramework、SpringData、SpringCloud、SpringCloudDataFlow、SpringSecurity、SpringBatch等众多项目。在spring的官网中对其有详细的介绍。
- sbatch: error: Batch script contains DOS line breaks (\r\n)
爱听许嵩歌
编程debug问题batchmatlabslurm
问题:在使用超算时,提交脚本出现batch:error:BatchscriptcontainsDOSlinebreaks(\r\n)sbatch:error:insteadofexpectedUNIXlinebreaks(\n)原因:dos下的换行和Unix是不一样的:windows中\r\n表示换行,linux等使用\n换行。差异:Windows系统下文本文件的换行符是:回车+换行CR/LF即\
- 【深度学习基础】PyTorch中model.eval()与with torch.no_grad()以及detach的区别与联系?
目录1.核心功能对比2.使用场景对比3.区别与联系4.典型代码示例(1)模型评估阶段(2)GAN训练中的判别器更新(3)提取中间特征5.关键区别总结6.常见问题与解决方案(1)问题:推理阶段显存爆掉(2)问题:Dropout/BatchNorm行为异常(3)问题:中间张量意外参与梯度计算7.最佳实践8.总结以下是PyTorch中model.eval()、withtorch.no_grad()和.d
- DataLoader
在PyTorch中,DataLoader是torch.utils.data模块中的一个重要类,用于将数据集包装成可迭代对象,在训练和测试模型时提供了高效、便捷的数据加载和批处理功能。主要作用:批量处理数据:将数据集中的样本整理成一个个批次(batch),方便模型进行一次处理多个样本,加速训练过程。例如,设置batch_size=32,就会每次从数据集中取出32个样本组成一个批次。数据打乱:在训练过
- 第八周 tensorflow实现猫狗识别
降花绘
365天深度学习tensorflow系列tensorflow深度学习人工智能
本文为365天深度学习训练营内部限免文章(版权归K同学啊所有)**参考文章地址:[TensorFlow入门实战|365天深度学习训练营-第8周:猫狗识别(训练营内部成员可读)]**作者:K同学啊文章目录一、本周学习内容:1、自己搭建VGG16网络2、了解model.train_on_batch()3、了解tqdm,并使用tqdm实现可视化进度条二、前言三、电脑环境四、前期准备1、导入相关依赖项2、
- lstm 输入数据维度_keras中关于输入尺寸、LSTM的stateful问题
weixin_39856269
lstm输入数据维度
补充:return_sequence,return_state都是针对一个时间切片(步长)内的h和c状态,而stateful是针对不同的batch之间的。多层LSTM需要设置return_sequence=True,后面再设置return_sequence=False.最近在学习使用keras搭建LSTM的时候,遇到了一些不明白的地方。有些搞懂了,有些还没有搞懂。现在记下来,因为很快就会忘记!-_
- torch 填充补齐
AI算法网奇
python宝典python
目录行填充补齐1.填充长度(Padding)2.掩码(Masking)3.排序优化(可选)行填充补齐importtorchfromtorch.nn.utils.rnnimportpad_sequence#原始序列(每个序列是二维张量,行数不同)batch_data=[torch.tensor([[1,2,3]])#1行#torch.tensor([[4,5,6],[7,8,9]]),#2行#tor
- lstm 数据输入问题
AI算法网奇
python基础lstm人工智能
lstm我有20*6条数据,20个样本,每个样本6条历史数据,每条数据有5个值,我送给网络输入时应该是20*6*5还是6*20*5你的数据是:20个样本(batchsize=20)每个样本有6条历史数据(sequencelength=6)每条数据有5个值(inputsize=5)✅正确的输入形状是:(20,6,5)#即batch_size=20,seq_len=6,input_size=5前提是你
- OpenWebUI(8)源码学习-后端utils/telemetry追踪遥测模块
目录目录结构说明`constants.py`核心作用:主要功能:示例代码片段:`exporters.py`核心作用:主要类:`LazyBatchSpanProcessor`特点:技术亮点:`instrumentors.py`核心作用:插桩对象包括:钩子函数(Hooks):Instrumentor类:插桩流程:`setup.py`核心作用:主要功能:典型调用方式:✨总体架构与价值技术亮点总结✅开发建
- 探索Spring Batch的终极指南:高效批处理解决方案
水照均Farrah
探索SpringBatch的终极指南:高效批处理解决方案def-guide-spring-batchSourceCodeforTheDefinitiveGuidetoSpringBatchbyMichaelMinella项目地址:https://gitcode.com/gh_mirrors/de/def-guide-spring-batch项目介绍欢迎来到《TheDefinitiveGuideto
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- 科研:diffusion生成MNIST程序实现
Menger_Wen
科研:diffusion人工智能机器学习stablediffusionpython
科研:diffusion生成MNIST程序实现第一部分:填写部分的详细解释1.`diffusion.py`中的`batch_extend_like`方法2.`diffusion.py`中的`ode_reverse`方法3.`sde_schedule.py`中的`sde_forward`方法第二部分:逐行解释两个程序1.`diffusion.py`(Diffusion类)`__init__`方法`b
- PagedAttention和Continuous Batching
流浪大人
大模型深度学习人工智能机器学习
PagedAttention是什么PagedAttention是一种用于优化Transformer架构中注意力机制的技术,主要用于提高大语言模型在推理阶段的效率,特别是在处理长序列数据时能有效减少内存碎片和提高内存利用率。它借鉴了操作系统中虚拟内存分页机制的思想。工作原理传统注意力机制的局限性:传统的注意力机制在处理长序列时,需要为每个位置计算注意力得分并存储中间结果,这会导致内存占用随着序列长度
- Github 2024-05-07 开源项目日报 Tp10
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,今日(2024-05-07统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量TypeScript项目4JupyterNotebook项目2Python项目1Batchfile项目1非开发语言项目1Java项目1HTML项目1C#项目1从零开始构建你喜爱的技术创建周期:2156天Star数量:253338个Fork数量:240
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">