- YOLOv4 介绍及其模型优化方法
1、YOLOv4介绍2020年4月,YOLOv4在悄无声息中重磅发布,在目标检测领域引起广泛的讨论。在YOLO系列的原作者JosephRedmon宣布退出CV领域后,表明官方不再更新YOLOv3。但在过去的两年中,AlexeyAB继承了YOLO系列的思想和理念,在YOLOv3的基础上不断进行改进和开发,于今年4月发布YOLOv4,并得到了原作者JosephRedmon的承认。YOLOv4可以使用传
- 2020-10-30
Victor Zhong
AI框架人工智能深度学习机器学习
极片缺陷检测模型验证报告:1:数据准备训练集:326张验证集:81张2:模型准备模型:yolov33:训练参数设置epochs:4603batch_size:8device:RTX2080Ticfg:yolov3-spp-jp4:验证结果5:检测结果部分检测结果图,全部结果图见文件夹result:6:结果分析a.训练数据中,某一类缺陷标注数量相对较少,影响检测该类的目标;可以通过数据增强的方法或增
- 深度学习目标检测之YOLOv3实战(二)训练自己的图像数据
郎郎不会飞
深度学习目标识别python深度学习
深度学习目标检测之YOLOv3实战(二)训练自己的图像数据数据集准备数据集预处理原demo修改数据集训练目标检测补充二零二零年的大年初一,给大家拜个年,祝大家鼠年吉祥,万事如意,趁着喜气,把Yolov3训练自己的数据过程,记录一下,共勉共进。同样,无人机搭载山狗拍摄的视频,目标检测的种类是模型tank和airplane,部分效果图镇贴:数据集准备首先需要将自己的数据集准备好,不同场景下的目标数据尽
- 目标检测——YOLO11算法解读
lishanlu136
#目标检测目标检测YOLO11YOLO系列算法解读
作者:Ultralytics公司代码:https://github.com/ultralytics/ultralyticsYOLO系列算法解读:YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算法解读、YOLOv7算法解读、
- YOLOv4 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv4正负样本划分详解一、前言在目标检测中,正负样本划分是训练过程中的关键环节,它决定了哪些预测框参与损失计算,从而影响模型的学习效果。YOLOv4在YOLOv3的基础上进行了改进,包括:使用CSPDarknet53主干网络;引入PANet特征融合结构;支持Mosaic数据增强;使用CIoULoss和DIoU-NMS;但在正样本划分逻辑上,YOLOv4保持了与YOLOv3类似的设计方式,并
- YOLO的作者们
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
YOLO之父JesephRedmon,他创建了yolov1、yolov2、yolov3三个版本,但是在2020年2月份却宣布退出CV学术界、停止一切关于计算机视觉的研究、原因是自己的开源算法已经用在军事和隐私问题上,这对他的道德造成了巨大的考验,他拒绝AI算法用于军事和隐私窥探。而在这2个月之后,另一位曾经参与YOLO项目维护的大神AlexeyBochkovskiy,在arXiv上提交了YOLOv
- YOLOv3 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv3正负样本划分详解一、前言在目标检测任务中,正负样本的划分是训练过程中的关键环节。它决定了哪些预测框参与位置回归、分类损失和置信度损失。YOLOv3在YOLOv2的基础上引入了多尺度预测和更精细的AnchorBoxes匹配策略,使得正样本的选择更加合理,提高了模型的召回率和定位精度。本文将基于以下来源进行解析:YOLOv3:AnIncrementalImprovement(论文原文)A
- YOLOv4 改进点详解
要努力啊啊啊
计算机视觉YOLO目标检测计算机视觉算法
✅YOLOv4改进点详解一、前言YOLOv4是目标检测领域的一次重大升级,由AlexeyBochkovskiy等人在论文《YOLOv4:OptimalSpeedandAccuracyofObjectDetection》中提出。与YOLOv3相比,YOLOv4引入了多个结构优化和训练策略改进,在保持实时性的同时进一步提升了模型的精度和鲁棒性。本文将严格按照以下来源进行说明:✅论文原文:YOLOv4:
- 算法在嵌入式端的部署与优化
早日退休!!!
硬件算法嵌入式硬件
算法在嵌入式端的部署与优化前言理论1.参考资源2.其他1.将深度学习模型移植到嵌入式端时,提高推理速度的方法2.深度学习模型移植到嵌入式端的主要流程3.假设将已经训练好的目标检测模型(比如YOLOv3)移植到树莓派4B这样一款嵌入式设备上,并且需要保证推理速度达到实时。具体流程如下4.在树莓派上使用ncnn推理引擎,可以采取以下措施提高推理速度5.先进行模型压缩再用推理模型部署是一种常见的深度学习
- YOLOv3目标检测实战
宁安我
YOLO目标检测人工智能
YOLOv3目标检测实战:从理论到代码实现目录YOLOv3目标检测实战:从理论到代码实现1.引言2.YOLOv3的核心原理2.1网络结构2.2锚框(AnchorBoxes)2.3损失函数2.4预测流程3.案例:使用YOLOv3进行目标检测3.1数据集准备3.2模型定义3.2.1Darknet-53主干网络3.2.2YOLOv3检测头3.3训练与优化3.3.1损失函数3.3.2训练脚本3.4模型推理
- # YOLOv3:基于 PyTorch 的目标检测模型实现
www_pp_
YOLOpytorch目标检测
YOLOv3:基于PyTorch的目标检测模型实现引言YOLOv3(YouOnlyLookOnce)是一种流行的单阶段目标检测算法,它能够直接在输入图像上预测边界框和类别概率。YOLOv3的优势在于其高效性和准确性,使其在实时目标检测任务中表现出色。本文将详细介绍如何使用PyTorch实现YOLOv3模型,并提供完整的代码实现。1.YOLOv3简介YOLOv3是YOLO系列算法的第三个版本,它在前
- YOLOv3 目标检测算法深度解析
mozun2020
DL1:深度学习YOLO目标检测算法计算机视觉人工智能目标识别
YOLOv3目标检测算法深度解析一、算法原理与核心创新1.1算法设计哲学YOLOv3(YouOnlyLookOnceversion3)作为YOLO系列的第三代算法,延续了单阶段检测范式,通过端到端的回归策略实现实时目标检测。其核心设计目标是在保持检测速度优势的同时,显著提升多尺度目标检测能力,尤其针对小目标检测和复杂场景优化。1.2关键技术创新点1.2.1Darknet-53骨干网络残差连接:引入
- **深度学习之Keras-DIOU-YOLOv3: 更精确的目标检测利器**
许煦津
深度学习之Keras-DIOU-YOLOv3:更精确的目标检测利器去发现同类优质开源项目:https://gitcode.com/在这个数字化时代,目标检测是计算机视觉领域的一个重要组成部分,广泛应用于自动驾驶、视频监控、图像理解等多个场景。是一个基于Keras实现的改进版YOLOv3模型,它引入了DIOU(Distance-Intersection-over-Union)损失函数,旨在提高目标定
- 探秘PyTorch_YOLOv3:高效目标检测的利器
高慈鹃Faye
探秘PyTorch_YOLOv3:高效目标检测的利器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于PyTorch实现的目标检测框架,它采用了YOLOv3算法,该算法由JosephRedmon等人在2018年提出,以其实时性、高精度和广泛的适应性而备受关注。该项目致力于提供一个简单易用且高效的YoloV3实现,让用户能够轻松地进行目标检测任务。技术分析YOLOv3
- 机器学习、图像识别、视觉识别框架的对比表:
芯知社区
机器学习人工智能
以下是机器学习、图像识别、视觉识别框架的对比表:特性TensorFlowPyTorchOpenCVGoogleCloudVisionAPIYOLOv3Halcon开发语言Python,C++等Python,C++等C++,Python,Java等通过REST和RPCAPI调用Python,C++等C,C++,C#,VisualBasic等应用场景机器学习、深度学习、图像处理等机器学习、深度学习、计
- YOLO系列模型简介
西北风^_^
大模型YOLO
YOLO(YouOnlyLookOnce)系列模型是用于目标检测的一组深度学习模型,以其快速且高效的特点著称。该系列模型由JosephRedmon等人开发,自2016年的YOLOv1发布以来,已经经历了多个版本的迭代和发展,包括YOLOv2、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7及最新的YOLOv8等。每个版本都在前一代的基础上进行了改进和优化,提升了模型的速度和准确
- 旋转目标检测:FCOS: Fully Convolutional One-Stage Object Detection【方法解读】
沉浸式AI
《AI与SLAM论文解析》目标检测人工智能计算机视觉论文解读旋转目标检测
FCOS:全卷积单阶段目标检测我们提出了一种全卷积单阶段目标检测器(FCOS),以逐像素预测的方式解决目标检测问题,类似于语义分割。目前几乎所有的最先进目标检测器,如RetinaNet、SSD、YOLOv3和FasterR-CNN,都依赖于预定义的锚框。相反,我们提出的FCOS检测器是无锚框的,同时也是无候选区域的。通过消除预定义的锚框集,FCOS完全避免了与锚框相关的复杂计算,如训练期间计算重叠
- 经典的YOLOv3和YOLOV5算法详解及代码复现
清风AI
深度学习算法详解及代码复现YOLO算法yolov3yolov5计算机视觉人工智能
YOLO的基本原理YOLO(YouOnlyLookOnce)是一种革命性的目标检测算法,它巧妙地将复杂的检测问题转化为回归问题。这种方法的核心在于将输入图像划分为S×S网格,每个网格负责预测其内部的物体位置和类别。具体来说,每个网格需要预测(B×5+C)个值,其中B代表边界框数量,C为类别数。最终,模型输出一个S×S×(B×5+C)大小的张量。YOLO的一个关键创新是使用非极大值抑制(NMS)算法
- YOLOv3 推理与后处理模块源码解析
LIUDAN'S WORLD
YOLO系列教程YOLO人工智能目标检测
一、YOLOv3模型推理过程源码解析推理过程指的是将输入图像送入训练好的YOLOv3模型,得到模型输出的预测结果。1.输入图像预处理(Preprocessing)在将图像送入模型之前,通常需要进行一系列的预处理操作,以使其符合模型的输入要求。常见的预处理步骤包括:图像缩放(Resizing):将输入图像缩放到模型训练时所使用的尺寸,例如常见的416x416或608x608。这通常涉及到保持图像的宽
- 基于深度学习与YOLOv的人脸表情识别方法研究
源码空间站TH
深度学习人工智能
内容概要:文章探讨了基于深度学习的人脸表情识别技术,重点介绍了YOLOv3算法的应用。通过结合YOLOv3的实时检测能力和传统的分类器方法,实现了一个高效的人脸表情识别系统。文中详细讨论了YOLOv3的工作原理,数据预处理方法,训练与测试流程,并展示了系统的应用场景,如图片识别、视频识别和实时识别等。适合人群:计算机视觉研究人员、深度学习爱好者和相关领域的工程师。使用场景及目标:适用于人机交互、在
- YOLOv3预训练权重——开启目标检测的快捷之门
毕昕露Lionel
YOLOv3预训练权重——开启目标检测的快捷之门【下载地址】yolov3预训练权重资源yolov3预训练权重资源欢迎来到YOLOv3预训练权重的下载页面!本仓库提供YOLOv3模型的预训练权重文件,旨在帮助开发者和研究人员快速启动目标检测项目项目地址:https://gitcode.com/open-source-toolkit/a7417在追求高效、准确的目标检测之旅中,YOLOv3预训练权重无
- YOLOv3实践教程:使用预训练模型进行目标检测
LIUDAN'S WORLD
YOLO系列教程YOLO深度学习计算机视觉人工智能
目录简介环境准备获取预训练模型图像目标检测视频目标检测模型性能优化常见问题解答进阶学习路径简介YOLOv3(YouOnlyLookOnceversion3)是一种高效的实时目标检测算法,由JosephRedmon和AliFarhadi于2018年提出。与传统的目标检测方法相比,YOLO将目标检测视为单一的回归问题,直接从完整图像预测边界框及其类别概率,使其成为速度和准确性之间平衡的优秀选择。本教程
- 复现deep_sort_yolov3--demo.py
聿默
目标跟踪tensorflowkeras
0.环境opencv-python==4.1.0.25/4.1.2.30Pillowscikit-learn==0.19.2numpy==1.15.0keras==2.2.4tensorflow==1.12.0imutils1.修改1.1在deep_sort添加videocaptureasync.pyimportthreadingimportcv2classVideoCaptureAsync:de
- 探索MobileNet-Yolo:轻量级的移动端目标检测神器
施刚爽
探索MobileNet-Yolo:轻量级的移动端目标检测神器MobileNet-YoloMobileNetV2-YoloV3-Nano:0.5BFlops3MBHUAWEIP40:6ms/img,YoloFace-500k:0.1Bflops420KB:fire::fire::fire:项目地址:https://gitcode.com/gh_mirrors/mo/MobileNet-Yolo项目简
- PyTorch-YOLOv3 安装和配置指南
劳蕾令
PyTorch-YOLOv3安装和配置指南PyTorch-YOLOv3eriklindernoren/PyTorch-YOLOv3:是一个基于PyTorch实现的YOLOv3目标检测模型。适合用于需要实现实时目标检测的应用。特点是可以提供PyTorch框架下的YOLOv3模型实现,支持自定义模型和数据处理流程。项目地址:https://gitcode.com/gh_mirrors/py/PyTor
- YOLO_v3_PyTorch: 基于PyTorch的YOLOv3实现指南
吕曦耘George
YOLO_v3_PyTorch:基于PyTorch的YOLOv3实现指南YOLO_v3_PyTorch使用PyTorch实现基于YOLOv3的目标检测器项目地址:https://gitcode.com/gh_mirrors/yo/YOLO_v3_PyTorch项目介绍YOLO_v3_PyTorch是一个简洁的PyTorch版本YOLOv3框架,旨在提供对YOLOv3目标检测算法的支持,包括训练、推
- 【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
牙牙要健康
目标检测深度学习目标检测pytorch
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解文章目录【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解前言YOLOV3的模型结构YOLOV3模型的基本执行流程YOLOV3模型的网络参数YOLOV3的核心思想前向传播阶段反向传播阶段总结前言YOLOV3是由华盛顿大学的JosephRedmon等人在《YOLOv3:AnIncrementalImprovem
- yolo模型学习笔记——4——yolov4相比与yolov3的优点
Summit-
YOLO学习笔记
1.网络结构和架构的改变(1)yolov3使用darknet-53的主干网络,该网络基于残差结构(2)yolov4使用CSPDarknet53,增强版darknet-53,具有更高的计算效率和更好的特征提取能2.优化技术(1)yolov3使用了基础的数据增强技术(如翻转、裁剪、亮度调整等),并且使用了自适应锚框来匹配目标的大小(2)yolov41.Mosaic数据增强这是一种新的数据增强方法,通过
- 【ROS】Darknet_ROS YOLO V3 部署自训练模型 目标检测
Abaaba+
YOLO目标检测人工智能
【ROS】Darknet_ROSYOLOV3目标检测前言整体思路安装依赖项检查克隆源码编译与构建准备文件1.权重文件(xf_real.weights)2.配置文件(xf_real.cfg)3.模型配置文件(xf_real.yaml)修改配置ros.yamldarknet_ros.launch使用与测试前言本文适用于已掌握YOLOv3和Darknet基础知识的读者,旨在帮助大家快速在ROS上部署自定
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache