- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 基于智能合约的AI算力交易:以太坊应用开发全流程
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构智能合约人工智能ai
基于智能合约的AI算力交易:以太坊应用开发全流程关键词:智能合约、AI算力交易、以太坊、应用开发、全流程摘要:本文围绕基于智能合约的AI算力交易在以太坊上的应用开发全流程展开。首先介绍相关背景知识,接着深入解释核心概念及它们之间的关系,阐述核心算法原理和操作步骤,给出数学模型和公式,通过项目实战展示代码实际案例及详细解释,探讨实际应用场景,推荐相关工具和资源,分析未来发展趋势与挑战。最后总结主要内
- Android操作系统的UI适配方案研究
操作系统内核探秘
操作系统内核揭秘androiduiai
Android操作系统的UI适配方案研究关键词:AndroidUI适配、屏幕密度、分辨率适配、约束布局、多屏幕支持、响应式设计、dp/sp单位摘要:本文深入探讨Android操作系统中的UI适配问题及其解决方案。文章从基础概念入手,分析Android碎片化带来的适配挑战,详细介绍多种适配方案的技术原理和实现方法,包括尺寸单位、布局技术、资源限定符等。通过实际代码示例和数学模型,展示如何构建适应不同
- AIGC 领域 AI 写作在电商文案中的应用技巧
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGC人工智能easyuiai
AIGC领域AI写作在电商文案中的应用技巧关键词:AIGC、AI写作、电商文案、内容生成、自然语言处理、营销自动化、个性化推荐摘要:本文深入探讨了AIGC(人工智能生成内容)技术在电商文案创作中的应用技巧。文章首先介绍了AIGC的基本概念和发展现状,然后详细分析了AI写作在电商领域的核心应用场景和技术原理。通过具体的算法解析、数学模型和实际案例,展示了如何利用AI技术提升电商文案的创作效率和质量。
- AI人工智能深度学习的模型评估与选择
AI大模型应用之禅
人工智能深度学习ai
AI人工智能深度学习的模型评估与选择关键词:AI、人工智能、深度学习、模型评估、模型选择摘要:本文聚焦于AI人工智能深度学习中的模型评估与选择。在深度学习迅猛发展的当下,构建一个有效的模型并非易事,而准确评估和恰当选择模型对于模型性能的发挥和应用效果至关重要。文章将详细介绍模型评估与选择的相关背景知识,深入剖析核心概念与联系,阐述核心算法原理及具体操作步骤,运用数学模型和公式进行详细讲解并举例说明
- 【Python】Pillow 2
宅男很神经
python开发语言
3.2.1色彩空间(ColorSpace)与色彩模型(ColorModel)基础色彩模型(ColorModel):色彩模型是一种抽象的数学模型,用一组数值(通常是三个或四个分量)来描述颜色。常见的色彩模型有:RGB(Red,Green,Blue):加色模型,常用于显示器、扫描仪、数码相机。通过混合不同强度的红、绿、蓝三原色光来产生各种颜色。CMY(Cyan,Magenta,Yellow):减色模型
- 多目标优化:改进蚁群算法解决实际工程问题
AI智能探索者
算法服务器linuxai
多目标优化:改进蚁群算法解决实际工程问题关键词:多目标优化、改进蚁群算法、实际工程问题、算法原理、项目实战摘要:本文聚焦于多目标优化领域,介绍了如何运用改进蚁群算法来解决实际工程问题。首先阐述了多目标优化和蚁群算法的相关概念,接着深入分析改进蚁群算法的原理和具体操作步骤,包括数学模型和公式。通过项目实战展示了该算法在实际中的应用,探讨了其实际应用场景、工具和资源推荐,以及未来发展趋势与挑战。最后进
- 数据分析领域如何借助AI人工智能升级
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶数据分析人工智能数据挖掘ai
数据分析领域如何借助AI人工智能升级关键词:数据分析、人工智能、机器学习、自动化分析、智能决策、数据预处理、预测分析摘要:本文系统阐述数据分析领域如何通过人工智能实现技术升级。从传统数据分析的瓶颈出发,解析AI驱动的核心技术架构,包括自动化数据预处理、智能特征工程、预测分析模型、自然语言处理在数据分析中的应用。通过具体算法实现、数学模型推导和项目实战案例,展示AI如何提升数据分析效率、挖掘数据深度
- 人工智能之数学基础:概率论之韦恩图的应用
每天五分钟玩转人工智能
概率论韦恩图
韦恩图的应用由于事件的计算有时候太过于抽象了,此时我们可以使用韦恩图的方式来进行验证,我们下面来举一个例子,A∪B)-C=A∪(B-C)是否成立?我们可以通过韦恩图来完成这个任务:我们通过这种方式来一点一点的比较,我们可以看到二者根本就不相等。AB杠和A杠B杠之间的区别?AB表示AB同时发生,AB杠表示AB不同时发生(覆盖范围大)A杠B杠表示A、B都不发生(覆盖范围小)我们也可以通过韦恩图的方式来
- 统计学①——概率论基础及业务实战
数据小斑马
统计学统计学基础概率分布随机变量期望和方差转盘
统计学系列目录(文末有超级大礼):统计学②——概率分布(几何,二项,泊松,正态分布)统计学③——总体与样本统计学④——置信区间统计学⑤——假设验证一、统计学是什么?统计学分为两类,一类是描述性统计学,通过对数据的集中趋势和变异趋势的刻画来描述数据的分布情况,集中趋势有平均值,中位数和众数三个指标,变异趋势则有全距,四分位距,百分位距,方差,标准差等指标来衡量另一类是推断统计学,通过对样本的统计来推
- 统计学07:概率论基础
夜雨声烦yyy
统计学概率论
一、基础概念概率p代表事件发生的可能性大小,在0-1范围内ab测试中的p值,就代表一种概率(在零假设成立的前提下,观察当前数据或者比当前数据更加极端的数据的概率,p值越小,意味着在零假设成立的情况下,观察到当前结果的概率越小)二、基本性质非负性:P(A)>=0规范性:整个样本空间发生的概率是1加法公式:两个事件A和B的概率之和是P(A∪B)=P(A)+P(B)−P(A∩B)(非互斥事件)P(A∪B
- 暗流涌动
创作人李新钢
深度学习和所有机器学习方法一样,是一种用数学模型对真实世界中的特定问题进行建模,以解决该领域内相似问题的过程。要教计算机认字,差不多也是同样的道理。计算机也要先把每一个字的图案反复看很多很多遍,然后,在计算机的大脑(处理器加上存储器)里,总结出一个规律来,以后计算机再看到类似的图案,只要符合之前总结的规律,计算机就能知道这图案到底是什么字。学习的、反复看的图片叫“训练数据集”;“训练数据集”中,一
- 机器学习入门:线性回归详解与实战
线性回归(LinearRegression)是机器学习中最基础也最常用的算法之一,无论是初学者入门还是实际业务场景,都能看到它的身影。本文将从概念、原理到代码实现,带你全方位了解线性回归。一、什么是线性回归?简单来说,线性回归是一种用于预测自变量与因变量之间线性关系的算法。它假设因变量(需要预测的结果)与一个或多个自变量(影响因素)之间存在线性关联,通过构建数学模型来描述这种关系,从而实现对未知数
- Python趣味算法:冒泡排序——从理论到极致优化
坐路边等朋友
Python算法程序人生开发语言python人工智能学习方法经验分享
排序算法是程序员的必修课,而冒泡排序是理解算法思维的绝佳起点。本文将深入解析冒泡排序的7种优化技巧,通过可视化演示+多维度性能分析,带你彻底掌握这一经典算法!看在每天坚持分享有趣知识的份上,点个关注吧(づ ̄3 ̄)づ关注是我更新的动力 ̄︶ ̄∗ ̄︶ ̄∗)作者会分享更多涉及到各种编程语言的有趣知识!(^∀^●)ノシ目录一、算法核心:气泡上浮的物理模拟1.1动态可视化算法流程1.2时间复杂度数学模型二、基
- 目标检测:AI人工智能推动金融科技发展
AI应用开发实战派
人工智能目标检测金融ai
目标检测:AI人工智能推动金融科技发展关键词:目标检测、金融科技、人工智能、计算机视觉、深度学习、YOLO、金融风控摘要:本文深入探讨了目标检测技术在金融科技领域的创新应用。我们将从计算机视觉基础原理出发,详细分析目标检测的核心算法和数学模型,并通过实际金融场景案例展示其应用价值。文章不仅包含技术实现细节,还提供了完整的开发环境搭建指南和代码示例,最后展望了该技术在金融科技领域的未来发展趋势和挑战
- 数学专业转型数据分析竞争力发展报告
Re_Yang09
数据分析数据挖掘
一、核心优势拆解(1)数学能力与数据分析对应关系数学课程数据分析应用场景比较优势说明概率论假设检验设计能准确判断统计显著性阈值实变函数数据质量评估异常值检测的严格性更高线性代数特征工程构建矩阵运算优化模型训练效率(2)典型优势案例金融风控场景:数学背景者构建的违约预测模型AUC值平均高0.15用户画像分析:数学系毕业生提出的分层抽样方案降低30%调研成本二、技能补全路线图三、转型学习路径(1)阶段
- 数据湖vs数据仓库:非结构化数据存储的终极对决
AI大数据智能洞察
大数据与AI人工智能数据仓库ai
数据湖vs数据仓库:非结构化数据存储的终极对决关键词:数据湖,数据仓库,非结构化数据,数据存储,Schema-on-Read,Schema-on-Write,数据治理摘要:本文深入对比数据湖与数据仓库在非结构化数据存储领域的核心差异,从技术架构、数据处理范式、应用场景等维度展开分析。通过数学模型、代码实战和典型案例,揭示两者在非结构化数据管理中的优势与局限,为企业数据架构选型提供决策参考。1.背景
- Hive数据加密:大数据安全存储方案
AI大数据智能洞察
hivehadoop数据仓库ai
Hive数据加密:大数据安全存储方案关键词:Hive数据加密、大数据安全、存储方案、加密算法、密钥管理摘要:本文深入探讨了Hive数据加密这一重要的大数据安全存储方案。首先介绍了Hive数据加密的背景,包括目的、适用读者、文档结构和相关术语。接着阐述了核心概念,如加密的原理和架构,并通过示意图和流程图进行直观展示。详细讲解了核心算法原理和具体操作步骤,结合Python代码示例。引入了相关的数学模型
- 量化投资革命:卫星图像数据如何提升价值投资准确率
AI量化价值投资入门到精通
ai
量化投资革命:卫星图像数据如何提升价值投资准确率关键词:量化投资、卫星图像数据、价值投资、准确率提升、数据挖掘摘要:本文聚焦于量化投资领域,深入探讨卫星图像数据在提升价值投资准确率方面的关键作用。首先介绍量化投资与价值投资的背景,引出卫星图像数据的引入。接着详细阐述卫星图像数据的核心概念、与投资的联系以及数据处理的核心算法原理。通过数学模型和公式分析其如何助力投资决策。结合实际项目案例展示卫星图像
- 软件工程领域产品运营的开发流程管理
软件工程领域产品运营的开发流程管理关键词:软件工程、产品运营、开发流程、敏捷开发、DevOps、持续集成、项目管理摘要:本文深入探讨了软件工程领域中产品运营的开发流程管理。从传统的瀑布模型到现代的敏捷开发和DevOps实践,我们将全面分析各种开发流程的优缺点、适用场景以及实施方法。文章包含详细的流程图示、代码示例、数学模型以及实际案例分析,旨在为软件工程师、产品经理和技术管理者提供一套完整的开发流
- 人工智能之数学基础:概率论和数理统计在机器学习的地位
每天五分钟玩转人工智能
机器学习深度学习之数学基础人工智能概率论机器学习神经网络线性代数
概率和统计的概念概率统计是各类学科中唯一一门专门研究随机现象的规律性的学科,随机现象的广泛性决定了这一学科的重要性。概率论是数学的分支,它研究的是如何定量描述随机现象及其规律。我们之前经常在天气软件上看到:“今天下雨的概率是95%”,这个95%就是概率,概率就是描述可能性的一个数值。概率在机器学习中的地位概率论在机器学习中至关重要,因为我们可以将机器学习的输入数据看作是随机变量,当机器学习中的输出
- 量化金融简介(附电子书资料)
hweiyu00
技术栈杂谈量化金融
概述量化金融(QuantitativeFinance)是一门融合数学、统计学、计算机科学与金融学的交叉学科,核心是通过量化模型和数据分析解决金融领域的问题,例如资产定价、风险管理、投资策略开发等。它的兴起与金融市场的复杂化、数据可获得性提升以及计算机算力发展密切相关。电子书资料:https://pan.quark.cn/s/cb1e6b72fbec一、量化金融的核心目标降低不确定性:通过数学模型分
- HTTP与网络通信:促进网络的绿色发展
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构网络http网络协议ai
HTTP与网络通信:促进网络的绿色发展关键词:HTTP、网络通信、绿色发展、能源效率、数据传输优化摘要:本文深入探讨了HTTP与网络通信在促进网络绿色发展方面的重要作用。首先介绍了HTTP和网络通信的背景知识,包括其目的、预期读者和文档结构等。接着阐述了HTTP和网络通信的核心概念及联系,详细讲解了相关算法原理和具体操作步骤,并给出了数学模型和公式进行深入分析。通过项目实战展示了如何在实际中运用相
- AI人工智能领域多智能体系统:在智能渔业中的养殖管理应用
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶人工智能ai
AI人工智能领域多智能体系统:在智能渔业中的养殖管理应用关键词:多智能体系统、智能渔业、养殖管理、人工智能、分布式决策、环境监测、自主控制摘要:本文深入探讨了多智能体系统(MAS)在智能渔业养殖管理中的应用。我们将从基础概念出发,分析多智能体系统的架构原理,详细介绍其在渔业环境监测、投喂优化、疾病预警等方面的具体实现方法。文章包含数学模型、算法实现和实际案例,为读者提供从理论到实践的完整知识体系,
- 概率论基础:公理、定律与贝叶斯定理
偏偏无理取闹
概率论公理贝叶斯定理条件概率随机变量
背景简介概率论是数学的一个分支,主要研究随机事件和随机变量的概率。它是现代统计学、经济学、保险学、金融学、密码学等多个领域不可或缺的理论基础。本文将通过介绍概率论的三大公理,推导出重要的概率法则,并探讨贝叶斯定理及其应用。概率的三大公理概率论的基础在于一套明确的公理系统,这些公理为计算和理解概率提供了数学上的框架。公理1:概率值的范围每个事件A的概率值介于0和1之间,即0≤Pr[A]≤1。这意味着
- 微服务架构监控:四大黄金指标解析
AI云原生与云计算技术学院
架构微服务云原生ai
微服务架构监控:四大黄金指标解析关键词:微服务架构、监控体系、四大黄金指标、SRE、延迟、流量、错误、饱和度摘要:本文深入解析微服务架构监控的核心方法论——四大黄金指标(延迟、流量、错误、饱和度),基于GoogleSRE最佳实践,结合具体技术实现与数学模型,阐述指标设计原理、数据采集方法、可视化实践及异常诊断逻辑。通过完整的项目实战案例,演示如何构建端到端监控体系,帮助技术团队建立可观测性基线,提
- 机器学习之——认识机器学习
-睡到自然醒~
golang重构开发语言
首先,什么是机器学习?参照百度百科的讲解,“机器学习是一门多领域交叉学科,设计概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习能力,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。”什么意思呢?也就是说,机器学习是一门跨领域的学科,是一种能够让机器模仿人类学习能力的一种学科。在Andrew的课程中,提到了几个机器学习的定义:1,A
- 时序数据库在数据库领域的行业应用
数据库管理艺术
数据库时序数据库ai
时序数据库在数据库领域的行业应用关键词:时序数据库、数据库领域、行业应用、时间序列数据、实时分析摘要:本文深入探讨了时序数据库在数据库领域的行业应用。首先介绍了时序数据库的背景知识,包括其目的、适用读者、文档结构和相关术语。接着阐述了时序数据库的核心概念、架构和工作原理,通过Python代码详细讲解了核心算法。还介绍了相关的数学模型和公式,并举例说明。在项目实战部分,给出了开发环境搭建、源代码实现
- 鸿蒙应用App Linking优化:深度链接性能
操作系统内核探秘
操作系统内核揭秘harmonyos华为ai
鸿蒙应用AppLinking优化:深度链接性能关键词:鸿蒙系统、AppLinking、深度链接、性能优化、路由匹配、参数解析、冷启动优化摘要:本文深入探讨鸿蒙系统下AppLinking深度链接的性能优化策略。从核心概念解析出发,详细阐述深度链接在鸿蒙架构中的实现原理,包括Ability路由机制、链接解析算法和参数传递模型。通过数学模型分析路由匹配复杂度,结合Python算法示例演示链接解析过程。基
- Eureka 为大数据领域服务治理带来的新思路
大数据洞察
大数据AI应用大数据与AI人工智能eureka大数据云原生ai
Eureka为大数据领域服务治理带来的新思路关键词:Eureka,大数据,服务治理,分布式系统,微服务摘要:本文深入探讨了Eureka为大数据领域服务治理带来的新思路。首先介绍了大数据领域服务治理的背景和现状,阐述了Eureka的核心概念与工作原理。接着详细分析了Eureka核心算法原理,结合Python代码进行说明,并给出相关数学模型和公式。通过项目实战案例,展示了Eureka在大数据服务治理中
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源