- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- 5G 承载网中的数学函数
机理分析法,从流量控制、稳定性保障、资源优化和跨层协同四个维度,系统解析5G承载网络中数学函数的作用机制,揭示其如何通过数学建模实现网络性能的动态平衡与优化。一、流量控制函数:网络流建模与路径优化1.组网拓扑与流量函数5G承载网的组网模式(环形、环带链、双归)直接影响流量分布,其数学表征如下:环形组网流量函数:Bi(t)=NB⋅η(t)+ΔBstat(t)B:环网总带宽;N:节点数;η(t)
- 【2024国赛C题】2024 年全国大学生数学建模比赛思路、代码更新中.....
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️竞赛事件及参赛一、解题思路二、准备建议三、注意事项1找程序网站推荐2公式编辑器、流程图、论文排版324年国赛C题及资源下载4思路、代码分享......⛳️竞赛事件及参赛一、解题思路理解题目背景和要求:仔细阅读题目,理解问题的背景、目的和具体要求。识别问题的关键要素
- GWO-CNN-BiLSTM-Attention多变量多步时间序列预测 | Matlab实现灰狼算法优化卷积双向长短期记忆融合注意力机制
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:时间序列预测在各个领域具有广泛的应用,而多变量多步时间序列预测由于其复杂性和挑战性,一直是研究热点。本文提出了一种基于灰狼算法(GreyWolfOptimizer,GWO)优化的卷积神经网络(Conv
- 【2024国赛D题】2024 年全国大学生数学建模比赛思路、代码更新中.....
长安程序猿
matlab
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️竞赛事件及参赛一、解题思路二、准备建议三、注意事项1找程序网站推荐2公式编辑器、流程图、论文排版324年国赛D题及资源下载4思路、代码分享......⛳️竞赛事件及参赛竞赛开始时间:北京时间2024年9月5日18:00竞赛结束时间:北京时间2024年9月8日20:
- 2025年第十五届APMCM亚太地区大学生数学建模竞赛(中文赛项)B题(完整建模过程附python代码)
空脑小白
数学建模数学建模
问题一:数据预处理与基础统计分析(以stroke.csv为例)一、建模目标对stroke.csv数据进行预处理、特征统计和可视化分析;找出影响中风的关键因素,为后续建模提供数据依据。二、建模过程(1)数据理解stroke.csv包含如下字段(常见字段如下,实际以文件为准):gender:性别age:年龄hypertension:是否患高血压(0:否,1:是)heart_disease:是否患心脏病
- 2025超详细的数学建模入门速成指南
2025数学建模入门速成指南(自用版)作为曾获国赛和华为杯双国一的选手,我认为数学建模入门关键在于掌握基础模型(优化、预测、评价)、数据处理思维(清洗、分析、可视化)以及有效的团队协作模式。这篇笔记结合我的自身经历,分享从【零基础到竞赛获奖】的准备思路。01整体规划1.数模入门数学建模竞赛考察我们解决实际问题的综合能力。在备赛初期首先建立以下认知基础:(1)竞赛特点:命题趋势:近年赛题倾向于跨学科
- AtCoder Beginner Contest 414(ABCD)
前言被数学建模分散精力后明显感觉状态不如月初了,这俩赛道看来只能选一个走。TT一、A-StreamerTakahashi#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(){intn,l,r;cin>>n>>l>>r;intcnt=0;for(inti=0,x,y;i>x>>y;if(x=r){cnt++;}}
- 【人工智能之深度学习】1. 深度学习基石:神经元模型与感知机的数学本质(附代码实现与收敛性证明)
AI_DL_CODE
人工智能之深度学习人工智能深度学习神经元模型感知机赫布法则深度学习基础线性可分
摘要:作为深度学习的基础单元,神经元模型与感知机承载着从生物智能到人工神经网络的桥梁作用。本文从生物神经元的工作机制出发,系统剖析数学建模过程:详解赫布法则的权重更新原理(Δwi=η·xi·y),推导McCulloch-Pitts神经元模型的数学表达(y=Θ(∑wixi−b)),重点证明感知机在linear可分情况下的收敛性——通过Novikoff定理严格推导迭代次数上界,揭示间隔γ对收敛速度的影
- 第十二届“中关村青联杯”全国研究生数学建模竞赛-A题:水面舰艇编队防空和信息化战争评估模型(续)(附MATLAB代码实现)
格图素书
大数据竞赛赛题解析数学建模
目录5.3.3问题三的总结5.4问题四的模型建立与求解5.4.1问题分析5.4.2计算方位角和航向角5.4.3计算距离D和水平速度5.4.4分析并建立模型5.4.4.1聚类分析方法的提出5.4.4.2模型的建立5.4.5问题四的总结5.5问题五的模型建立与求解5.5.1问题五的分析5.5.2传统的战争评估模型5.5.2.1正规作战模型5.5.2.2游击作战模型5.5.2.3混合作战模型5.5.3信
- 【Pandas超实用经验汇总-数据建模分析】
Mr.小海
Python数据挖掘数据分析python
Pandas超实用经验汇总-数据分析前言基本方法1.读取文件2.查看数据3.修改、删除、替换数据等总结前言看见了很多教程虽然很全,但是很多技巧容易忘记且几乎用不上,读起来晦涩难懂,今天我给大家总结了Pandas的一些学习经验技巧,包含常见日常使用的pandas知识,以及一些技巧,这些技巧常见于数学建模,数据分析,数据挖掘比赛等。基本方法1.读取文件方法如下:importpandasaspd#正常写
- 【2024国赛C题】【农作物的种植策略】2024 年全国大学生数学建模比赛思路、代码更新中.....
程序猿鑫
数学建模
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️竞赛事件及参赛1找程序网站推荐2公式编辑器、流程图、论文排版324年国赛C题及资源下载4思路、代码分享......⛳️竞赛事件及参赛根据乡村的实际情况,充分利用有限的耕地资源,因地制宜,发展有机种植产业,对乡村经济的可持续发展具有重要的现实意义。选择适宜的农作物,
- 盲超分的核心概念
小冷爱读书
数学建模盲超分超分重建
一、盲超分的本质与数学建模1.退化过程的数学表达低分辨率图像(LR)可看作高分辨率图像(HR)经过退化模型后的结果::观测到的低分辨率图像:待恢复的高分辨率图像:模糊核(BlurKernel)⊗:卷积操作↓:下采样(步长为):加性噪声(如高斯噪声、泊松噪声等)盲超分的核心问题:在未知、、的情况下,从估计。2.为什么传统超分方法会失效?传统方法(如SRCNN、EDSR)假设退化是固定的(如双三次下采
- 开发智能化的企业并购风险评估模型
开发智能化的企业并购风险评估模型关键词:企业并购、风险评估、人工智能、机器学习、深度学习、数学建模摘要:本文详细探讨了开发智能化企业并购风险评估模型的背景、核心概念、算法原理、系统架构设计以及项目实战。通过结合机器学习和深度学习技术,提出了一种基于数据驱动的智能化风险评估方法,旨在帮助企业更准确地识别和预测并购过程中的潜在风险,提升决策的科学性和有效性。第1章:企业并购风险评估模型的背景与问题描述
- 洛谷 B3627 立方根--二分法求解整数立方根问题
jdlxx_dongfangxing
算法c++二分法
一、问题重述与数学建模给定一个正整数n,我们的目标是计算其立方根的整数部分,即找到最大的整数m满足m³≤n。这个问题可以形式化表述为:数学定义:⌊∛n⌋=max{x∈ℤ⁺|x³≤n}问题特性分析:单调性保证:立方函数f(x)=x³在正整数域上是严格单调递增的函数有界性:解的范围明确限定在[1,n]区间内离散性:我们需要寻找的是整数解而非实数解应用意义:该问题在实际中常用于需要快速估算立方根的场合,
- 数学建模问题攻略指南
Matlab精灵
数学建模数学建模matlab
数学建模是一个将现实世界的复杂问题转化成数学形式来对问题进行分析和求解的过程。这个过程涉及将实际问题中的复杂因素简化为数学结构,并用数学语言描述这些因素及其相互关系。引入一个经典问题:长方形(四角连线呈长方形)的椅子是否可以在地面上放稳,数学建模的过程就是需要将其转化成数学形式进行分析和求解,主要分为以下五个步骤。1.提出问题首先分析问题,列出问题中涉及的变量,包括适当的单位。经过分析,可以用变量
- Pandas 学习(数学建模篇)
停走的风
数学建模pandas学习
今天学习数学建模2023年C篇(228)优秀论文2023高教社杯全国大学生数学建模竞赛C题论文展示(C228)-2023C题论文-中国大学生在线一.pd.DataFramepd.DataFrame()是pandas库中用于创建二维表格数据结构(DataFrame)的核心函数。它的作用是将各种格式的数据(如字典、列表、Series等)转换为带有行索引和列标签的表格形式,便于数据处理和分析.impor
- DeepSeek 帮助自己的工作
引言简述人工智能助手在职场中的普及趋势DeepSeek作为智能创作助手的核心功能概述DeepSeek的核心能力信息检索与整合:基于用户意图精准搜索并生成答案多场景应用:技术文档撰写、数据分析、代码生成等交互优化:遵循用户指定的格式与内容规范职场应用场景与实操案例技术文档撰写自动生成API文档框架根据需求补充技术细节示例代码块与公式的规范化输出数据分析支持快速检索行业数据并生成可视化建议数学建模中的
- LRU缓存算法在搜索引擎中的应用
数据结构与算法学习
缓存算法搜索引擎ai
LRU缓存算法在搜索引擎中的应用关键词:LRU算法、缓存淘汰、搜索引擎、哈希表、双向链表、性能优化、访问频率摘要:本文深入探讨了LRU(最近最少使用)缓存算法在搜索引擎中的关键应用。我们将从基本概念出发,通过生活化的比喻解释LRU的工作原理,分析其在搜索引擎架构中的具体实现方式,并通过Python代码示例展示如何构建一个高效的LRU缓存系统。文章还将讨论LRU算法的数学建模、实际应用场景以及未来发
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- 分布式领域后端服务的限流算法实现
大厂资深架构师
SpringBoot开发实战分布式算法wpfai
分布式领域后端服务的限流算法实现关键词:分布式系统、限流算法、令牌桶、漏桶、滑动窗口、Redis、高并发摘要:本文深入探讨分布式系统中后端服务的限流算法实现。我们将从基础概念出发,详细分析各种限流算法的原理和适用场景,包括计数器算法、滑动窗口算法、令牌桶算法和漏桶算法。文章将提供Python实现代码和数学建模,并通过实际案例展示如何在分布式环境中使用Redis实现高效的限流机制。最后,我们将讨论限
- 数学建模_非线性规划
matlab求解调用示例第二道例题建模matlab求解1.matlab只能处理min问题:max两边取负号变成min2.>=>=>=号变成<=<=<=:两边取负号调用示例第二道例题建模目标函数取平方而不取绝对值后面省略
- 数学建模_插值
wwer142526363
数学建模
什么是插值拉格朗日插值法埃尔米特插值法三次样条插值法matlab应用分段三次埃尔米特插值法三次样条插值法(更好更光滑二维插值详见上机篇什么是插值省略插值法定理拉格朗日插值法牛顿插值法省略埃尔米特插值法三次样条插值法省略样条插值法matlab应用分段三次埃尔米特插值法详见上机篇三次样条插值法(更好更光滑二维插值详见上机篇上机篇24分钟开始
- 回归预测 | MATLAB实现LSTM-SVR(长短期记忆神经网络-支持向量机)多输入单输出
matlab科研社
神经网络回归matlab
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍长短期记忆神经网络(LSTM)作为一种循环神经网络(RNN)的变体,擅长处理序列数据并捕捉长期依赖关系,而支持向量机(SVR)则是一种强大的回归算法,能够有效地处理高维数据并防止过拟合。将两者结合的LSTM
- 【锂电池SOC估计】 Matlab基于BP神经网络的锂电池SOC估计
天天Matlab代码科研顾问
matlab神经网络开发语言
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍摘要:电池荷电状态(StateofCharge,SOC)的精确估计对于电动汽车、储能系统等应用至关重要。传统的SOC估计方法存在精度受限、算法复杂等问题。本文提出了一种基于反向传播(BackPropagation,BP)神经网络的锂电池SO
- 分类预测 | MATLAB实现BP神经网络多特征分类预测
matlab科研社
分类matlab神经网络
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍近年来,随着大数据时代的到来以及计算能力的显著提升,人工智能技术得到了飞速发展。在众多人工智能算法中,反向传播神经网络(BackPropagationNeuralNetwork,BP神经网络)凭借其强大的非
- 重排利器:行列式点过程(DPP)在推荐系统中的应用
Jay Kay
推荐算法数学建模推荐算法
在推荐系统的重排阶段,我们常面临结果同质化问题——精排结果相似物料扎堆,导致用户体验单调。行列式点过程(DeterminantalPointProcesses,DPP)通过数学建模相关性与多样性的平衡,成为解决该问题的经典方案。一、DPP的核心思想DPP将推荐列表视为一个点过程,其核心是计算子集出现的概率。给定候选集(Z)(精排输出的Top-N物料),DPP定义子集(Y\subseteqZ)出现的
- 机器学习中的数学:数学建模常用知识点-1
数字化与智能化
机器学习中的数学机器学习凸函数泰勒公式Jensen不等式
一、凸函数1、凸函数讲解设函数f(x)是定义在区间X上的函数,若对于区间上任意两点x1、x2和任意实数��∈(0,1),总有如下表达式成立:则称为f(x)是X上的凸函数;反之,如果下式成立:则称为f(x)在X上的凹函数。如图所示:Python实现凸函数:importnumpyasnpimportmatplotlib.pyplotasplt#定义凸函数defconvex_function(x):re
- 前端领域前端框架的优缺点大剖析
前端视界
前端大数据与AI人工智能前端艺匠馆前端前端框架ai
前端领域主流框架的优缺点大剖析关键词:React、Vue、Angular、Svelte、虚拟DOM、响应式编程、前端工程化摘要:本文深入解析React、Vue、Angular、Svelte四大主流前端框架的核心设计原理,通过架构图解、算法源码剖析、数学建模和实战对比,揭示各框架在性能优化、开发体验、工程实践等方面的本质差异。文章包含6个完整项目案例和20+性能基准测试数据,为技术选型提供科学决策依
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,