- PaddleOCR 快速开始
张欣-男
PaddlePaddlePaddleOCROCR
1.安装1.1安装PaddlePaddle#GPUcudapipinstallpaddlepaddle-gpu#CPUpipinstallpaddlepaddle1.2安装PaddleOCRwhl包pipinstallpaddleocr2.便捷使用2.1命令行使用2.1.1中英文模型检测+方向分类器+识别全流程:–use_angle_clstrue设置使用方向分类器识别180度旋转文字,–use_
- 「源力觉醒 创作者计划」_以FastDeploy为例部署ERNIE-4.5-21B大模型全流程实践
cooldream2009
大模型基础AI技术文心大模型FastDeploy
目录前言1环境准备与依赖安装1.1硬件要求1.2Python环境与pip升级2下载ERNIE-4.5模型权重2.1安装HuggingFaceCLI工具2.2设置国内镜像加速(可选)2.3下载模型文件3安装FastDeploy与Paddle推理引擎3.1安装PaddlePaddle-GPU版本3.2安装FastDeploy-GPU4启动ERNIE-4.5本地服务4.1启动OpenAI兼容API服务4
- PaddleOCR 3.0全面解析:五大核心能力与实战应用指南
经优英
PaddleOCR3.0全面解析:五大核心能力与实战应用指南PaddleOCRAwesomemultilingualOCRtoolkitsbasedonPaddlePaddle(practicalultralightweightOCRsystem,support80+languagesrecognition,providedataannotationandsynthesistools,suppor
- python --飞浆离线ocr使用/paddleocr
依赖#python==3.7.3paddleocr==2.7.0.2paddlepaddle==2.5.2loguru==0.7.3frompaddleocrimportPaddleOCRimportcv2importnumpyasnpif__name__=='__main__':OCR=PaddleOCR(use_doc_orientation_classify=False,#检测文档方向use
- paddleOCR模型的安装和使用
九日卯贝
paddleocr
paddleOCR仓库:https://github.com/PaddlePaddle/PaddleOCR?tab=readme-ov-file文档:https://paddlepaddle.github.io/PaddleOCR/main/quick_start.html#2-paddleocr环境安装python-mpipinstallpaddlepaddle-gpu==3.0.0b1-iht
- paddlepaddle测试安装_python3.7中安装paddleocr及paddlepaddle包的多种方法
瓦啦
升级pippip版本必须升级到20.0.4版本才能应用;方法一、在pycharm中对pip进行升级;方法二、通过命令进行升级python3.7-mpipinstall--upgradepip下载paddleOCR下载链接:https://github.com/PaddlePaddle/PaddleOCR打开paddleOCR文件夹中requirements.txt文件,更改文件中opencv-py
- ali docker部属paddleocr
大熊程序猿
ASP.NETCoredocker容器运维
dockerpullregistry.baidubce.com/paddlepaddle/paddle:2.6.0nano/root/projects/paddleocr_server.py========================fromflaskimportFlask,requestfromwerkzeug.utilsimportsecure_filenameimportuuidfrom
- 百度飞桨(PaddlePaddle)案例分享:基于 PaddleOCR 的图像文字提取系统
univerbright
百度paddlepaddle人工智能paddleocr图像文字提取
一、案例背景在实际教学、办公及政务系统中,纸质材料(如手写作文、表格、试卷等)仍广泛存在。为提升信息处理效率,采用OCR(OpticalCharacterRecognition)技术将图像中的文字提取为可编辑文本已成为刚需。本项目基于开源深度学习库PaddleOCR,构建了一个轻量级的图像文字识别工具,能够自动识别图像中的中文文本,并提供置信度评估和可视化支持。该工具特别适用于作业扫描图像中的内容
- 视觉模型部署实践:低算力平台RV1106上高效部署paddlepaddle 的PicoDet目标检测模型的技术实践
位东风
视觉模型部署实践paddlepaddle目标检测人工智能iot物联网嵌入式硬件
在资源受限的嵌入式设备上实现高精度、低延迟的目标检测,是当前智能摄像头、边缘计算等应用中的关键挑战。本文以Rockchip的RV1106嵌入式平台为例,结合百度开源的轻量级检测模型PicoDet,探讨如何通过模型优化与硬件加速,在有限的计算资源下实现高效的实时目标检测。目前该模型测试可以达到25fps左右一、背景介绍1.1RV1106硬件特性主频:1.2GHzArmCortex-A55CPU内存:
- 使用PaddleOCR读取pdf内容,输出txt文本
只有左边一个小酒窝
Paddlepdfpaddle人工智能
使用PaddleOCR读取PDF内容并输出为TXT文本,可以通过以下步骤实现。PaddleOCR是一个基于PaddlePaddle的OCR工具,支持多种语言的文本识别。一、安装依赖确保已安装PaddleOCR和相关的依赖库。以下是代码中涉及的依赖库及其功能说明:os所属语言:Python内置标准库功能:提供操作系统相关功能,如文件路径操作、目录管理等。示例用途:在处理文件时获取路径、创建目录等。f
- 如何制作属于自己的图片OCR功能
hit56笔记
机器学习
文章目录一、百度的PaddlePaddle二、一个开源软件三、谷歌的OCR实践方案1.安装软件包2.安装语言包3.运行代码三、facebook的抠图模型四、参考文献经过本人的多次实践探索,已上线至我的网站:www.hit56.com,可以在上面直接体验图片OCR功能一、百度的PaddlePaddlehttps://github.com/PaddlePaddle/PaddleOCR二、一个开源软件h
- 百度飞桨PaddleOCR 3.0开源发布 OCR精度跃升13%
吴脑的键客
人工智能百度paddlepaddleocr
百度飞桨PaddleOCR3.0开源发布2025年5月20日,百度飞桨团队正式发布了PaddleOCR3.0版本,并将其开源。这一新版本在文字识别精度、多语种支持、手写体识别以及高精度文档解析等方面取得了显著进展,进一步提升了PaddleOCR在OCR领域的技术实力和应用价值。开源地址:https://github.com/PaddlePaddle/PaddleOCR技术亮点全场景文字识别模型PP
- Python、PyTorch、TensorFlow和飞桨(PaddlePaddle)的核心介绍及对比
非小号
AIpythonpytorchtensorflow
以下是Python、PyTorch、TensorFlow和飞桨(PaddlePaddle)的核心介绍及对比,帮助你快速理解它们的定位与适用场景:一、Python:AI开发的基石语言定位:通用高级编程语言,以简洁语法和丰富库生态著称。核心优势:易学易用:代码可读性强,适合快速原型开发。生态丰富:拥有NumPy(科学计算)、Pandas(数据处理)、Matplotlib(可视化)等基础库,以及Scik
- 飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)
非小号
AIpaddlepaddle机器学习人工智能
以下是飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)中常用的模型、函数及工具链,结合其生态特点分类说明:一、数据采集与标注1.数据采集工具PaddleX(图像/视频场景)功能:支持图像分类、目标检测、语义分割任务的数据标注,集成标注工具(如矩形框、多边形标注)。官网工具:PaddleX数据标注工具用法:通过图形化界面或命令行启动标注工具,输出标准VOC/
- 通过paddlehub简单几行代码实现OCR识别
bobfreedman
AIocr
一、前置条件1、ubuntu系统2、python3、pip已经安装完毕3、paddlepaddle、paddlehub、cv2、gradio、matplotlib安装完毕二、实现代码ocr.pyimportpaddlehubashubimportmatplotlib.pyplotaspltimportmatplotlib.imageasmpimgimportgradioasgrimportcv2o
- PaddleHub一键OCR中文识别
jiabiao1602
ocr
PaddleHub是百度飞桨(PaddlePaddle)深度学习框架下的一个预训练模型应用工具,它为用户提供了丰富的高质量预训练模型和便捷的开发方式。这里我们仅介绍其在OCR中文识别方面的应用。一、PaddleHub介绍先让文心一言给我们介绍PaddleHub,以下是文心一言的答案。PaddleHub是百度飞桨(PaddlePaddle)深度学习框架下的一个预训练模型应用工具,它为用户提供了丰富的
- 搭建本地OCR服务(Paddlepaddle)
Johannisberger_
numpypipconda
1.先安装conda软件并创建conda虚拟环境指定好python版本下载conda:https://www.anaconda.com/download/安装并配置好环境变量创建虚拟环境:condacreate--nameocrpython=3.82.安装paddlepaddle下载paddlepaddlehttps://www.paddlepaddle.org.cn/根据设备情况安装cpu版本/
- PaddleHub识别中文人名实战记录及心得
Jason-Lai
NLP人工智能python自然语言处理
一,简介与特性便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tuneAPI,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用,PaddleHub旨在为开发者提供丰富的、高质量的、直接可用的预训练模型【模型种类丰富】:涵盖大模型、CV、NLP、Audio、Video、工业应用主流六大品类的400+预训练模型,全
- 2025转行指南:Java开发工程师转AI工程师,附全网最详细的大模型学习路线
AI小白熊
java人工智能学习大模型程序员ai开发语言
关键要点研究表明,Java开发工程师转AI工程师需要学习数学、Python编程、机器学习和深度学习等技能。证据显示,掌握TensorFlow、PyTorch等框架和云部署技术(如Aliyun、AWS)也很重要。学习资源包括Coursera的免费课程、DiveintoDeepLearning书和国内平台如PaddlePaddle。技能和学习资料概述所需技能要从Java开发工程师成功转型为AI工程师,
- paddle ocr本地化部署进行文字识别
隐形喷火龙
Pythonpaddleocr
一、Paddle简介1.基本概念Paddle(全称PaddlePaddle,飞桨)是百度开发的开源深度学习平台,也是中国首个自主研发、功能丰富、技术领先的工业级深度学习平台。它覆盖了深度学习从数据准备、模型训练、模型部署到预测的全流程,旨在帮助开发者快速实现AI应用。2.核心特点全场景覆盖:支持云端、边缘端、移动端等多硬件环境,适配CPU、GPU、FPGA等多种芯片。易用性与高效性:提供简洁的AP
- PaddlePaddle 和PyTorch选择与对比互斥
不懂球的小胖
aipython大模型paddlepaddlepytorch人工智能
你遇到的错误信息如下:RuntimeError:(PreconditionNotMet)Tensor'sdimensionisoutofbound.Tensor'sdimensionmustbeequalorlessthanthesizeofitsmemory.ButreceivedTensor'sdimensionis8,memory'ssizeis0.[Hint:Expectednumel()
- 使用paddlepaddle框架构建ViT用于CIFAR10图像分类
sherlockjjobs
深度学习Pythonpython深度学习图像分类
使用paddlepaddle框架构建ViT用于CIFAR10图像分类硬件环境:GPU(1*NVIDIAT4)运行时间:一个epoch大概一分钟importpaddleimporttimeimportpaddle.nnasnnimportpaddle.nn.functionalasFimportpaddle.vision.transformsastransformsfrompaddle.ioimpo
- Python基础paddlepaddle
愚昧之山绝望之谷开悟之坡
PaddlePaddleNLP基础知识python
print(math.ceil(4.1))#返回数字的上入整数print(math.floor(4.9))#返回数字的下舍整数字符串单引号、双引号、三引号print(‘HelloWorld!’)print(“HelloWorld!”)转义字符\print(“The\tisatab”)print(‘I’mgoingtothemovies’)TheisatabI’mgoingtothemovies三引
- PaddlePaddle最简单的例子:利用python api调用paddle实现模型加载与预测
少安的砖厂
PaddlePaddle开发
调用fluid的python接口:importpaddle.fluidasfluid图片操作:fromPILimportImage矩阵操作:importnumpyasnpexe=fluid.Executor(fluid.CPUPlace())//设置model的地址,在model_path字符型变量中保存[inference_program,feed_target_names,fetch_targ
- 深度学习框架:PaddlePaddle基础
白拾ShiroX
#深度学习网络python机器学习人工智能深度学习
介于CSDN的排版问题,这里附个人博客连接。https://discover304.top/2021/12/02/2021q4/107-4-dl-pdpd-base/说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。b{color:rgba(0,0,0,0.75)}PaddlePaddle概述PaddlePaddle概述Padd
- AI同声传译基于PaddlePaddle框架的开源方案介绍
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介随着人工智能技术的不断发展,越来越多的人将注意力集中在语音识别、机器翻译等领域,而这些技术虽然有其优点,但也面临着一些挑战。其中之一就是长文本翻译、多语言语音合成的难题,特别是在大规模数据和大型模型的情况下。为了解决这个问题,业界提出了许多有效的技术措施,如同声传译、分词对齐、强制教学等。在最近几年里,随着深度学习框架的火爆,出现了一系列基于神经网络的开源技术方
- 转行指南:Java开发工程师转AI工程师,附大模型学习路线
和老莫一起学AI
java人工智能学习langchain语言模型ai大模型
关键要点研究表明,Java开发工程师转AI工程师需要学习数学、Python编程、机器学习和深度学习等技能。证据显示,掌握TensorFlow、PyTorch等框架和云部署技术(如Aliyun、AWS)也很重要。学习资源包括Coursera的免费课程、DiveintoDeepLearning书和国内平台如PaddlePaddle。技能和学习资料概述所需技能要从Java开发工程师成功转型为AI工程师,
- python批量去除图片文字水印
数据服务生
python开发语言
#!/usr/bin/envpython#-*-coding:utf-8-*-#需要安装的库#pipinstallpaddlepaddle-ihttps://mirrors.aliyun.com/pypi/simple/#pipinstallpaddleocr-ihttps://mirrors.aliyun.com/pypi/simple/#pipinstallcv2-ihttps://mirro
- 探索高效目标检测新境界:PyTorch版PP-YOLOE全面解析与应用指南
乌芬维Maisie
探索高效目标检测新境界:PyTorch版PP-YOLOE全面解析与应用指南PPYOLOE_pytorch项目地址:https://gitcode.com/gh_mirrors/pp/PPYOLOE_pytorch在目标检测的浩瀚星空里,有一颗璀璨的新星——PP-YOLOE。这个基于Pytorch实现的项目,不仅承袭了PaddlePaddle版PP-YOLOE和Megvii的YOLOX的精粹,还实现
- 深度学习篇---模型GPU训练
Ronin-Lotus
图像处理篇深度学习篇上位机知识篇深度学习人工智能pythonopenmppaddlepaddlepytorch并行
文章目录前言一、在PaddlePaddle框架下使用GPU训练模型步骤1:确保环境准备就绪硬件软件步骤2:确认GPU可用步骤3:设置使用的GPU设备步骤4:定义模型步骤5:将模型移到GPU步骤6:准备数据并移到GPU步骤7:定义损失函数和优化器步骤8:训练模型二、在PyTorch框架下使用GPU训练模型步骤1:确保环境准备就绪硬件软件步骤2:确认GPU可用步骤3:设置使用的GPU设备步骤4:定义模
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo