Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 54737 Accepted Submission(s): 22959
看了一天线段树,总算是有点感觉了,不过还不是很成熟,debug了很久,明天再来大力猛刷吧。
1 #include <iostream> 2 #include <cstdio> 3 #include <string> 4 #include <queue> 5 #include <vector> 6 #include <map> 7 #include <algorithm> 8 #include <cstring> 9 #include <cctype> 10 #include <cstdlib> 11 #include <cmath> 12 #include <ctime> 13 #include <climits> 14 using namespace std; 15 16 const int SIZE = 50005; 17 int TREE[SIZE * 4],LAZY[SIZE * 4],N; 18 19 void build(int = 1,int = 1,int = N); 20 void push_down(int,int,int); 21 void update(int,int,int,int,int,int); 22 int que(int,int,int = 1,int = 1,int = N); 23 int main(void) 24 { 25 int t,count = 0; 26 int a,b; 27 char op[20]; 28 29 scanf("%d",&t); 30 while(t --) 31 { 32 scanf("%d",&N); 33 build(); 34 printf("Case %d:\n",++ count); 35 while(scanf(" %s",op) && strcmp(op,"End")) 36 { 37 scanf("%d%d",&a,&b); 38 if(op[0] == 'Q') 39 printf("%d\n",que(a,b)); 40 else if(op[0] == 'A') 41 update(a,a,1,1,N,b); 42 else if(op[0] == 'S') 43 update(a,a,1,1,N,-b); 44 } 45 } 46 47 return 0; 48 } 49 50 void build(int node,int begin,int end) 51 { 52 LAZY[node] = 0; 53 if(begin == end) 54 { 55 scanf("%d",&TREE[node]); 56 return ; 57 } 58 build(node << 1,begin,(begin + end) >> 1); 59 build(node << 1 | 1,((begin + end) >> 1) + 1,end); 60 TREE[node] = TREE[node << 1] + TREE[node << 1 | 1]; 61 } 62 63 void push_down(int node,int l,int r) 64 { 65 if(LAZY[node]) 66 { 67 int mid = (l + r) >> 1; 68 LAZY[node << 1] += LAZY[node]; 69 LAZY[node << 1 | 1] += LAZY[node]; 70 TREE[node << 1] += LAZY[node] * (mid - l + 1); 71 TREE[node << 1 | 1] += LAZY[node] * (r - (mid + 1) + 1); 72 //TREE[node << 1] += LAZY[node] * (mid - (mid >> 1)); 73 //TREE[node << 1 | 1] += LAZY[node] * (mid >> 1); 74 LAZY[node] = 0; 75 } 76 } 77 78 void update(int L,int R,int node,int l,int r,int d) 79 { 80 if(l >= L && r <= R) 81 { 82 TREE[node] += d * (r - l + 1); 83 LAZY[node] += d; 84 return ; 85 } 86 push_down(node,l,r); 87 88 int mid = (l + r) >> 1; 89 if(mid >= L) 90 update(L,R,node * 2,l,mid,d); 91 else 92 update(L,R,node * 2 + 1,mid + 1,r,d); 93 TREE[node] = TREE[node << 1] + TREE[node << 1 | 1]; 94 } 95 96 int que(int L,int R,int node,int l,int r) 97 { 98 if(l >= L && r <= R) 99 return TREE[node]; 100 if(r < L || l > R) 101 return 0; 102 push_down(node,l,r); 103 104 int mid = (l + r) >> 1; 105 return que(L,R,node << 1,l,mid) + que(L,R,node << 1 | 1,mid + 1,r); 106 }