- 论文复现 Rank consistent ordinal regression for neural networks withapplication to age estimation
DeniuHe
Pytorch算法
importtorchimporttorch.nn.functionalasFfromtorchimportnnfromtorch.autogradimportVariableimportpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccurac
- 支持向量回归(Support Vector Regression, SVR)详解
DuHz
回归数据挖掘人工智能信号处理算法数学建模机器学习
支持向量回归(SupportVectorRegression,SVR)详解支持向量回归(SupportVectorRegression,简称SVR)是一种基于支持向量机(SVM)的回归分析方法,广泛应用于预测和模式识别领域。SVR通过在高维空间中寻找一个最优超平面,以最大化数据点与超平面的间隔,从而实现对连续型变量的预测。本文将深入探讨SVR的理论基础、数学原理、模型构建、参数选择、训练与优化、应
- 线性回归(Linear regression)算法详解
.30-06Springfield
人工智能算法详解算法线性回归回归python人工智能机器学习
文章目录一、线性回归基础概念1.1什么是线性回归1.2线性回归小例子二、sklearn中线性回归的API和参数2.1安装sklearn2.2LinearRegression2.3SGDRegresso2.4Lasso2.5Ridge2.6各个API的对比三、使用sklearn实现线性回归3.1程序概述3.2核心功能3.3关键技术细节3.4程序运行结果3.5代码结构一、线性回归基础概念1.1什么是线
- 【机器学习】机器学习的基本分类-监督学习-线性回归(Linear Regression)
IT古董
人工智能机器学习机器学习分类学习人工智能线性回归
线性回归是监督学习中的一种基础算法,用于解决回归问题。它通过拟合一条直线(或平面、高维超平面),来预测输出与输入变量之间的关系。1.线性回归的基本概念目标给定输入和对应的输出y,找到一个线性函数:其中:是权重(回归系数)。b是偏置(截距)。y是预测值。损失函数为了找到最佳的w和b,需要最小化预测值和真实值
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- Mask R-CNN 论文译读笔记
songyuc
cnn笔记人工智能
MaskR-CNN摘要 本文提出了一种概念简单、灵活且通用的目标实例分割框架。本文的方法能够高效检测图像中的目标,同时为每个实例生成高质量的分割掩码。该方法被称为MaskR-CNN,它对现有的FasterR-CNN进行扩展并行增加一个对象掩膜预测分支同时包含原有的边界框识别分支。MaskR-CNN训练简单,相比FasterR-CNN仅增加少量开销,推断速度可达5fps。此外,MaskRCNN易于
- Decision Tree vs. Linear Regression
土豆羊626
机器学习人工智能python机器学习
DecisionTreevs.LinearRegressionDecisiontreesandlinearregressionarebothsupervisedmachinelearningtechniques,buttheyservedifferentpurposesandhavedistinctcharacteristics.Belowisadetailedcomparison:KeyDiff
- [论文阅读]Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression
qian9905
姿态估计论文阅读论文阅读深度学习机器学习
该论文发表于CVPR2021Background背景该论文关注的是的是自底向上的关键点回归人体姿态估计,作者认为回归关键点坐标的特征必须集中注意到关键点周围的区域,才能够精确回归出关键点坐标。因此提出了一种名为解构式关键点回归(DEKR)的方法。这种直接回归坐标的方法超过了以前的关键点热度图检测并组合的方法,并且在COCO和CrowdPose两个数据集上达到了目前自底向上姿态检测的最好结果上图作者
- 时间序列的线性回归
Ritter_Liu
线性回归算法回归
https://www.kaggle.com/code/xiefei/linear-regression-with-time-series
- 前馈神经网络回归(ANN Regression)从原理到实战
梁下轻语的秋缘
Python学习人工智能算法神经网络回归人工智能
前馈神经网络回归(ANNRegression)从原理到实战一、回归问题与前馈神经网络的适配性分析在机器学习领域,回归任务旨在建立输入特征与连续型输出变量之间的映射关系。前馈神经网络(FeedforwardNeuralNetwork)作为最基础的神经网络架构,通过多层非线性变换,能够有效捕捉复杂的非线性映射关系,尤其适合处理传统线性模型难以建模的高维、非线性回归问题。1.1回归任务核心特征输出空间连
- 一文读懂机器学习:分类(classification)、回归(regression)、排名(ranking)、uplifting(提升效果)和异常检测(Anomaly detection)
此星光明
机器学习分类回归数据挖掘ydf排序提升异常检测
概述机器学习是一种人工智能技术,使计算机能够通过经验自动改进性能,主要分为监督学习(使用带标签的数据进行训练)、无监督学习(寻找无标签数据中的模式)、半监督学习(结合带标签和无标签数据)和强化学习(通过与环境交互学习)。它广泛应用于金融(信用评分)、医疗(疾病预测)、自动驾驶(路径规划)和自然语言处理(机器翻译)等领域,关键概念包括特征、模型、过拟合和交叉验证。本文我们使用ydf方法进行分别介绍。
- 【机器学习-07】逻辑回归(Logistic Regression,LR)算法:原理、应用与实现
云天徽上
机器学习机器学习逻辑回归python
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- 概率预测之NGBoost(Natural Gradient Boosting)回归和分位数(Quantile Regression)回归
人工都不智能了
boosting回归kotlin
概率预测之NGBoost(NaturalGradientBoosting)回归和线性分位数回归NGBoostNGBoost超参数解释NGBoost.fitscore(X,Y)staged_predict(X)feature_importances_pred_dist方法来获取概率分布对象分位数回归(QuantileRegression)smf.quantreg对多变量数据进行分位数回归分析概率预测
- 边框回归(Bounding Box Regression)详解
为时不晚L
计算机视觉计算机视觉目标检测
原文地址:http://blog.csdn.net/zijin0802034/article/details/77685438Bounding-Boxregression最近一直看检测有关的Paper,从rcnn,fastrcnn,fasterrcnn,yolo,r-fcn,ssd,到今年cvpr最新的yolo9000。这些paper中损失函数都包含了边框回归,除了rcnn详细介绍了,其他的pap
- 机器学习 第一章
小白猿同学
机器学习人工智能
机器学习第一章一、什么是机器学习(MachineLearning)让计算机自己从数据中学习出规律,无需人手写规则输入:特征x输出:标签y学习目标:学习出f(x)等价于y二、三大类型任务类型英文特点示例回归Regression输出是连续值房价预测分类Classification输出是类别标签图像识别结构化学习StructuredPrediction输出是结构机器翻译、NER三、模型核心公式y=wx+
- 逻辑回归(Logistic Regression)
pljnb
机器学习基础逻辑回归算法机器学习
逻辑回归(LogisticRegression)原理通过Sigmoid函数(σ(z)=11+e−zσ(z)=\frac{1}{1+e^{-z}}σ(z)=1+e−z1)将线性回归输出z=wTx+bz=w^Tx+bz=wTx+b映射到[0,1]区间输出值表示样本属于正类的概率:P(y=1∣x)=σ(wTx+b)P(y=1|x)=σ(w^Tx+b)P(y=1∣x)=σ(wTx+b)决策边界为线性超平面
- 【机器学习|学习笔记】提升回归树(Gradient Boosting Regression Trees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)
努力毕业的小土博^_^
机器学习学习笔记机器学习学习笔记神经网络回归boosting人工智能
【机器学习|学习笔记】提升回归树(GradientBoostingRegressionTrees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)【机器学习|学习笔记】提升回归树(GradientBoostingRegressionTrees,GBRT)的起源、发展、应用与前景,附代码实现示例。(二)文章目录【机器学习|学习笔记】提升回归树(GradientBoostingRegress
- 【李宏毅深度学习——回归模型的PyTorch架构】Homework 1:COVID-19 Cases Prediction (Regression)
AI的Learner
深度学习深度学习人工智能
目录1、显示NVIDIAGPU的状态信息2、数据集的两种不同的下载方式3、导入相关库4、三个工具函数5、定义自己的数据集类6、定义神经网络模型7、定义选择特征的函数8、训练过程9、超参数字典config10、准备和加载数据11、创建并训练模型12、加载并启动TensorBoard13、使用训练好的模型进行预测14、下载文件到本地1、显示NVIDIAGPU的状态信息#checkgputype!nvi
- 【数据挖掘】岭回归(Ridge Regression)和线性回归(Linear Regression)对比实验
dundunmm
数据挖掘数据挖掘回归线性回归岭回归
这是一个非常实用的岭回归(RidgeRegression)和线性回归(LinearRegression)对比实验,使用了scikit-learn中的CaliforniaHousing数据集来预测房价。第一步:导入必要的库importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltfromsklearn.linear_modelimportR
- 分位数回归+共形预测:Conformalized Quantile Regression实现更可靠的预测区间
人工智能机器学习数据挖掘
预测不确定性量化在数据驱动决策过程中具有关键作用。无论是评估医疗干预的风险概率还是预测金融市场的价格波动范围,我们常需要构建预测区间——即以特定置信度包含目标真值的概率区间。分位数回归(QuantileRegression,QR)作为一种传统统计方法,长期以来被用于预测此类区间。与常规回归方法建模条件均值不同,QR直接对条件分位数进行建模,例如预测结果的第90百分位数。然而单纯依赖QR在实践应用中
- C1-Week2 Program Assignment: Logistic Regression with a Neural Network mindset
houzhizhen
LogisticRegressionwithaNeuralNetworkmindsetWelcometoyourfirst(required)programmingassignment!Youwillbuildalogisticregressionclassifiertorecognizecats.ThisassignmentwillstepyouthroughhowtodothiswithaNe
- 数据标注中的归类与定义,从聚类,相关,关联,回归四个方面分析
小宝哥Code
人工智能训练师聚类回归数据挖掘
在数据标注和AI训练过程中,数据的归类与定义是关键步骤,不同的数据分析方法可以用于不同的场景。本文从**聚类(Clustering)、相关(Correlation)、关联(Association)、回归(Regression)**四个角度探讨数据标注的优化,并结合Python代码示例进行说明。1.聚类(Clustering)1.1概念聚类是一种无监督学习方法,它将相似的数据点分为同一个组,而无需预
- R语言中的偏最小乘回归(Partial Least Squares Regression, PLSR)和判别分析(Discriminant Analysis,
程序才子
r语言回归开发语言R语言
R语言中的偏最小乘回归(PartialLeastSquaresRegression,PLSR)和判别分析(DiscriminantAnalysis,DA)偏最小乘回归(PartialLeastSquaresRegression,PLSR)与判别分析(DiscriminantAnalysis,DA)是R语言中常用的数据建模和预测技术。它们可以用于解决回归问题和分类问题。本文将介绍PLSR和DA的基本
- Implement Ridge Regression Loss Function
六月五日
Deep-MLDeep-ML
ImplementRidgeRegressionLossFunctionWriteaPythonfunctionridge_lossthatimplementstheRidgeRegressionlossfunction.Thefunctionshouldtakea2DnumpyarrayXrepresentingthefeaturematrix,a1Dnumpyarraywrepresentin
- 机器学习和线性回归、softmax回归
小名叫咸菜
人工智能线性回归
监督学习监督学习(supervisedlearning)擅⻓在“给定输⼊特征”的情况下预测标签。每个“特征-标签”对都称为一个样本(example)。我们的目标是生成一个模型,能够将任何输⼊特征映射到标签(即预测)。回归——平方误差损失函数回归(regression)是最简单的监督学习任务之一。分类——交叉熵样本属于“哪一类”的问题称为分类问题回归是训练一个回归函数来输出一个数值;分类是训练一个分
- 机器学习里的逻辑回归Logistic Regression基本原理与应用
硅基创想家
AI-人工智能与大模型机器学习逻辑回归人工智能
LogisticRegression即逻辑回归,是一种广泛应用于机器学习和数据挖掘领域的有监督学习算法,以下从原理、应用、算法优缺点等方面进行介绍:基本原理线性回归基础:逻辑回归基于线性回归模型,其基本形式为:z=w1x1+w2x2+⋯+wnxn+bz=w_1x_1+w_2x_2+\cdots+w_nx_n+bz=w1x1+w2x2+⋯+wnxn+b其中xix_ixi是特征变量,wiw_iwi是对
- 零基础入门机器学习 -- 第四章分类问题与逻辑回归
山海青风
#机器学习机器学习分类逻辑回归python人工智能
4.1分类vs回归在机器学习中,任务通常分为两大类:回归(Regression):用于预测连续数值,如房价、温度、工资等。例如:预测明天的气温(28.5°C)。预测一辆二手车的价格(30,000元)。分类(Classification):用于预测离散类别,如垃圾邮件vs正常邮件。例如:判断一封邮件是否是垃圾邮件(“垃圾邮件”or“正常邮件”)。预测一个贷款申请是否会被批准(“批准”or“拒绝”)。
- 机器学习面试笔试知识点-线性回归、逻辑回归(Logistics Regression)和支持向量机(SVM)
qq742234984
机器学习线性回归逻辑回归
机器学习面试笔试知识点-线性回归、逻辑回归LogisticsRegression和支持向量机SVM微信公众号:数学建模与人工智能一、线性回归1.线性回归的假设函数2.线性回归的损失函数(LossFunction)两者区别3.简述岭回归与Lasso回归以及使用场景4.什么场景下用L1、L2正则化5.什么是ElasticNet回归6.ElasticNet回归的使用场景7.线性回归要求因变量服从正态分布
- 基于lstm算法在MATLAB对短期风速进行预测
�时过境迁,物是人非
lstm算法matlab
基于lstm算法在MATLAB对短期风速进行预测文件列表LSTM-regression-master/ELM.m , 965LSTM-regression-master/LSTM.m , 6302LSTM-regression-master/LSTM2.m , 7275LSTM-regression-master/LSTM_updata_weight.m , 4520LSTM-regression
- 推荐项目:Kaggle - House Prices: Advanced Regression Techniques
秦贝仁Lincoln
推荐项目:Kaggle-HousePrices:AdvancedRegressionTechniques去发现同类优质开源项目:https://gitcode.com/在这个数字化的时代,数据分析已经成为各行各业不可或缺的技能,尤其在房地产领域,精准的房价预测能带来巨大的商业价值。这就是我们要向你推荐的开源项目——Kaggle-HousePrices:AdvancedRegressionTechn
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,