- PaddleOCR 快速开始
张欣-男
PaddlePaddlePaddleOCROCR
1.安装1.1安装PaddlePaddle#GPUcudapipinstallpaddlepaddle-gpu#CPUpipinstallpaddlepaddle1.2安装PaddleOCRwhl包pipinstallpaddleocr2.便捷使用2.1命令行使用2.1.1中英文模型检测+方向分类器+识别全流程:–use_angle_clstrue设置使用方向分类器识别180度旋转文字,–use_
- 数据挖掘算法:KNN、SVM、决策树详解
大力出奇迹985
数据挖掘算法支持向量机
本文将详细解析数据挖掘领域中常用的三种经典算法:KNN(K近邻算法)、SVM(支持向量机)和决策树。首先分别阐述每种算法的核心原理、实现步骤,再分析它们的优缺点及适用场景,最后对这三种算法进行综合对比与总结。通过本文,读者能全面了解这三种算法的特性,为实际数据挖掘任务中算法的选择提供参考,助力提升数据处理与分析的效率和准确性。在当今信息爆炸的时代,数据挖掘技术在各行各业发挥着至关重要的作用,而算法
- 声纹识别系统(MFCC特征+DTW/SVM分类)
佩爷0107
支持向量机分类算法梅尔频率倒谱系数动态时间规整
摘要本毕业设计实现了一个完整的声纹识别系统,采用梅尔频率倒谱系数(MFCC)作为声学特征提取方法,结合动态时间规整(DTW)和支持向量机(SVM)两种分类算法进行说话人识别。系统包含语音预处理、特征提取、模型训练和识别测试等完整流程,并通过实验对比两种分类算法的性能。第一章绪论1.1研究背景与意义声纹识别(SpeakerRecognition)是生物特征识别技术的一种,通过分析语音信号中包含的说话
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- 深入详解K近邻算法(KNN):基本概念、原理及在医学影像领域的应用与实现
猿享天开
近邻算法算法医学影像人工智能机器学习大模型
博主简介:CSDN博客专家、CSDN平台优质创作者,高级开发工程师,数学专业,10年以上C/C++,C#,Java等多种编程语言开发经验,拥有高级工程师证书;擅长C/C++、C#等开发语言,熟悉Java常用开发技术,能熟练应用常用数据库SQLserver,Oracle,mysql,postgresql等进行开发应用,熟悉DICOM医学影像及DICOM协议,业余时间自学JavaScript,Vue,
- 基于Opencv的手势识别
双马尾为什么是神
opencv人工智能计算机视觉
thumb目录项目背景项目概览功能实现分类器选择数据收集与处理数据增强与傅里叶描述子计算SVM训练GUI设计未来展望项目背景回首过去一年半的大学时光,我深感自己过于安逸。没有明确的目标,对于学习也不太上心。倘若继续这样浑浑噩噩过下去,即便以后只想得过且过地过普通生活,最终结果恐怕难遂人愿。“取乎其上,得乎其中;取乎其中,得乎其下;取乎其下,则无所得矣。”于是乎我制定了与未来展望相匹配的学习路径,哪
- 机器学习从入门到实践:算法、特征工程与模型评估详解
目录摘要1.引言2.机器学习概述2.1什么是机器学习?2.2机器学习的发展历史2.3机器学习的应用3.机器学习算法分类3.1监督学习(SupervisedLearning)3.2无监督学习(UnsupervisedLearning)3.3半监督学习(Semi-SupervisedLearning)4算法详解4.1分类算法详解(1)逻辑回归(LogisticRegression)(2)决策树(Dec
- 工业缺陷检测的计算机视觉方法总结
思绪漂移
计算机视觉人工智能缺陷检测
工业缺陷检测的计算机视觉方法总结传统方法特征提取方式:颜色:基于HSV/RGB空间分析,如颜色直方图、颜色矩等纹理:采用LBP、Haar、Gabor滤波器等算子提取纹理模式形状:基于Hu矩、Zernike矩等数学描述符刻画几何特性尺寸:通过连通域分析计算物体像素面积、周长等参数典型处理流程:手动设计特征提取算法建立规则分类器(如SVM、决策树)基于阈值分割目标区域深度学习方法核心特点:端到端学习:
- python机器学习分类算法
在做算法的巨巨
最近状态不是很好,可能越是要接近终点,越是忐忑,还是要稳住,继续加油!!!我会尽快调整状态的。分类.png
- 阿里云内容审核之图片审核 spring boot 项目
大佐不会说日语~
阿里云云计算安全springboot
内容审核-阿里云视觉智能开放平台阿里云的图片审核服务是一种高效的内容安全解决方案,用于自动检测和过滤图片中的不适当内容。以下是关于阿里云图片审核服务:审核方式:阿里云图片审核服务采用两种主要方式来检测图片内容:MD5比对:通过比较上传图片的MD5值与素材库中的MD5值来获取审核结果。卷积神经网络(CNN)技术:使用CNN技术进行特征提取、各部分特征汇总,并通过分类器预测识别来进行审核。内容安全服务
- 机器学习篇-KNN算法实现鸢尾花模型和手写数字识别模型
一.KNN简介KNN思想K-近邻算法(KNearestNeighbor,简称KNN)。比如:根据你的“邻居”来推断出你的类别KNN算法思想:如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别K值根据网格和交叉验证来确定样本相似性:样本都是属于一个任务数据集的。样本距离越近则越相似。利用K近邻算法预测电影类型K值的选择KNN的应用方式解决问题:分类问题、回归问
- MATLAB水果分级系统水果识别
清风明月来几时
图像算法处理matlab开发语言
MATLAB草莓识别系统是一个基于MATLAB的图像处理系统,用于识别和分类草莓图像。该系统可以帮助农业领域的研究人员和农民快速准确地识别草莓品种和成熟度,从而帮助决策种植、采摘和销售的工作。系统的主要功能包括:1.图像预处理:对草莓图像进行去噪、增强和标准化等预处理工作,以提高后续的图像分析和识别效果。2.特征提取:从预处理后的图像中提取代表草莓特征的信息,例如颜色、形状、纹理等。3.分类器训练
- 机器学习(一)KNN,K近邻算法(K-Nearest Neighbors)
星期天要睡觉
机器学习近邻算法人工智能
建议初学者掌握KNN作为理解其他复杂算法(如SVM、决策树、神经网络)的基石。K近邻算法(K-NearestNeighbors,KNN)详解:原理、实践与优化K近邻算法(K-NearestNeighboKrs,简称KNN)是一种经典、直观且易于实现的监督学习方法,既可用于分类,也可用于回归。它“懒惰”地存储所有训练样本,直到有新样本需要预测时才临时计算,因此也被称为“懒惰学习算法”。本文将系统介绍
- C++性能优化擂台技术文章大纲
引言性能优化在C++开发中的重要性擂台赛形式的优势:激发创意,展示不同优化技巧目标读者:中高级C++开发者擂台赛规则设计统一基准测试环境(硬件、编译器、优化标志)参赛代码需通过功能正确性验证性能指标:执行时间、内存消耗、CPU缓存命中率禁止使用未定义行为和编译器特定扩展常见优化技术分类算法层面优化时间复杂度分析实际案例数据结构选择对性能的影响缓存友好的算法设计编译器优化技巧关键编译器标志对比(-O
- 机器学习之K-近邻算法
paid槮
机器学习近邻算法人工智能
什么是K-近邻算法K-近邻算法(KNN)概念KNearestNeighbor算法⼜叫KNN算法,这个算法是机器学习⾥⾯⼀个⽐较经典的算法,总体来说KNN算法是相对⽐较容易理解的算法定义如果⼀个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的⼤多数属于某⼀个类别,则该样本也属于这个类别。来源:KNN算法最早是由Cover和Hart提出的⼀种分类算法距离公式两个样本的距离可以通过如下公式计
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- 机器学习基础-k 近邻算法(从辨别水果开始)
耐思nice~
机器学习由浅入深-吴恩达机器学习近邻算法人工智能
一、生活中的"分类难题"与k近邻的灵感你有没有这样的经历:在超市看到一种从没见过的水果,表皮黄黄的,拳头大小,形状圆滚滚。正当你犹豫要不要买时,突然想起外婆家的橘子好像就是这个样子——黄色、圆形、大小和拳头差不多。于是你推断:"这应该是橘子吧!"其实,这个看似平常的判断过程,竟然藏着机器学习中最经典的分类算法——k近邻(k-NearestNeighbors,简称kNN)的核心思想!1.1现实中的解
- 数据处理和分析之分类算法:XGBoost:机器学习基础理论
kkchenkx
数据挖掘机器学习分类数据挖掘
数据处理和分析之分类算法:XGBoost:机器学习基础理论数据预处理与特征工程数据清洗数据清洗是数据预处理的第一步,旨在去除数据集中的噪声、不一致性和缺失值,确保数据的质量。这包括处理空值、异常值、重复数据和不一致的数据格式。示例:处理缺失值假设我们有一个包含用户年龄、性别和收入的数据集,其中年龄和收入字段存在缺失值。importpandasaspdimportnumpyasnp#创建示例数据集d
- 【C# + HALCON 机器视觉】机器视觉在变速箱齿轮齿形精度检测中的实战应用
AI_DL_CODE
机器视觉:C#+HALCONc#halcon机器视觉计算机视觉变速箱齿轮检测齿形精度检测傅里叶变换
摘要:本文聚焦C#与HALCON在变速箱齿轮齿形精度检测的实战应用,阐述基于傅里叶变换分析齿形轮廓、深度学习分类器判断硬度标记完整性的HALCON技术,以及C#集成多相机同步采集系统实现齿轮360°全检的开发过程。详细展示从环境搭建、硬件配置、图像采集处理,到齿形分析、标记检测、系统集成的实操流程,并提供完整代码。实际案例表明,该系统使检测周期缩短至3秒/件,精度达±5μm。同时分析高精度算法、系
- 构建RAG智能体(5):语义护栏之过滤无用信息
tilblackout
MachineLearning机器学习人工智能langchain
本篇文章我们将深入探讨语义护栏(SemanticGuardrailing),即如何利用嵌入模型作为语言骨干,并在此基础上训练一个分类器,以有效过滤掉对聊天机器人无益甚至有害的信息。本文将详细阐述这种方法相对于传统自回归引导过滤的优势,并通过生成合成数据的实际任务,展示了构建语义护栏的具体步骤。文章目录1引言2.利用嵌入模型构建语义护栏2.1相对于自回归引导过滤的优势2.2生成合成数据2.3更快地生
- 11、时间序列机器学习与经典模型入门
jam55
时间序列机器学习ARIMA
时间序列机器学习与经典模型入门时间序列分析在众多领域都有着广泛的应用,如经济学、气象学等。机器学习为时间序列分析提供了强大的工具,能够基于数据做出系统、可重复且经过验证的决策。下面将介绍时间序列机器学习的相关内容以及经典的时间序列模型。1.时间序列机器学习库在实际应用中,优秀的算法需要易于使用且可靠的软件实现。Python提供了许多可靠的时间序列机器学习库,以下是一些监督式回归和分类算法的实现情况
- 基于逻辑回归的图像二分类算法实现(Pytorch版)
哎呦哥哥、
图像分类pytorch逻辑回归分类
基于逻辑回归的图像二分类算法实现(Pytorch版)数据集模型代码数据集链接:FastFoodClassificationDataset我们只使用Burger和Pizza这两类。模型代码importtorchimporttorch.nnasnnfromtorchvision.models.utilsimportload_state_dict_from_urlmodel_urls={'resnet5
- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- 睡岗离岗检测算法 Python
燧机科技SuiJi
人工智能python算法深度学习神经网络
睡岗离岗检测算法的核心在于实时监控和智能分析,睡岗离岗检测算法通过安装在关键区域的监控摄像头,系统能够捕捉到员工的活动画面。当系统检测到人体位置长时间未发生变化时,将启动睡姿分类器。该分类器能够识别多种睡姿,如趴在桌子上睡、坐在凳子上后仰睡等。一旦识别为睡姿,系统将立即触发告警机制。这可以通过向管理人员发送警报信号,或通过语音提醒员工的方式实现。睡岗离岗检测算法在多种场景下均有广泛应用。该算法能够
- 基于探路者算法优化的核极限学习机(KELM)分类算法
智能算法研学社(Jack旭)
智能优化算法应用机器学习#核极限学习机(KELM)算法分类数据挖掘
基于探路者算法优化的核极限学习机(KELM)分类算法文章目录基于探路者算法优化的核极限学习机(KELM)分类算法1.KELM理论基础2.分类问题3.基于探路者算法优化的KELM4.测试结果5.Matlab代码摘要:本文利用探路者算法对核极限学习机(KELM)进行优化,并用于分类1.KELM理论基础核极限学习机(KernelBasedExtremeLearningMachine,KELM)是基于极限
- Python 机器学习:NumPy 实现朴素贝叶斯分类器
Python编程之道
Python编程之道python机器学习numpyai
Python机器学习:NumPy实现朴素贝叶斯分类器关键词:朴素贝叶斯分类器、NumPy、机器学习、概率模型、条件概率、拉普拉斯平滑、向量化计算摘要:本文系统讲解朴素贝叶斯分类器的核心原理,基于NumPy实现高效的算法框架,涵盖从概率理论到工程实现的完整流程。通过数学公式推导、代码实现和鸢尾花数据集实战,展示如何利用向量化计算优化概率估计,解决特征独立性假设下的分类问题。同时分析算法优缺点及实际应
- K近邻算法【python】【sklearn】
weixin_44985842
python近邻算法sklearn
0定义K近邻算法(K-NearestNeighbors,KNN)是一种基于实例的监督学习算法,主要用于分类和回归任务。其核心思想是:在特征空间中,对于待预测的样本,找到与其距离最近的k个已知样本(“邻居”),根据这k个邻居的类别(分类任务)或属性值(回归任务)来决定该样本的预测结果,,常用欧氏距离公式:对于两个n维样本点xi=(xi1,xi2,...,xin)x_i=(x_{i1},x_{i2},
- 人脸数目统计系统实现:基于OpenCV和C++的人脸识别
本文还有配套的精品资源,点击获取简介:本项目介绍如何利用OpenCV库和C++语言开发一个人脸识别系统,用于统计图像中的人脸数量。内容涵盖人脸识别的基本原理、关键步骤及技术细节,包括使用Haar级联分类器进行人脸检测,并通过C++编程实现从图像处理到人脸统计的全过程。1.人脸识别基本原理与步骤人脸识别技术已经在安全验证、智能家居、社交媒体等多个领域得到了广泛应用。其基本原理是通过分析人脸图像中的特
- Java NLP炼金术:从词袋到深度学习,构建AI时代的语言魔方
墨夶
Java学习资料人工智能java自然语言处理
一、JavaNLP的“三剑客”:框架与工具链1.1ApacheOpenNLP:传统NLP的“瑞士军刀”目标:用词袋模型实现文本分类与实体识别代码实战:文档分类器的“炼成术”//OpenNLP文档分类器(基于词袋模型)importopennlp.tools.doccat.*;importopennlp.tools.util.*;publicclassDocumentClassifier{//训练模型
- 论文略读: Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probab
UQI-LIUWJ
论文笔记人工智能
ICLR2024判断生成的文本是人写的还是大模型写的现有的检测器主要分为两类有监督分类器在训练领域表现出色,但在面对来自不同领域或不熟悉模型生成的文本时表现变差零样本分类器免疫领域特定的退化在检测精度上可以与有监督分类器相当但目前的方法计算成本高、计算时间长——>提出了一种新的假设来检测机器生成的文本人类和机器在给定上下文的情况下选择词汇存在明显的差异人类的选择比较多样,而机器更倾向于选择具有更高
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$