- 机器学习深度学习驱动在光子学设计中的应用与未来【专题培训会议邀您共探科技前沿】
软研科技
信息与通信信号处理量子计算人工智能
一、背景介绍在智能科技飞速发展的今天,光子学设计与智能算法的结合正成为科研创新的热点。深度学习、机器学习等算法在光子器件的逆向设计、超构表面材料设计、光学神经网络构建等方面展现出巨大潜力。二、会议亮点由北京软研国际信息技术研究院主办的“智能算法驱动的光子学设计与应用”专题培训会议,将深入探讨以下核心内容:光子器件的逆向设计:利用深度学习优化多参数光子器件设计。超构表面与超材料设计:智能算法在新型光
- 迁移学习解析
劭清
深度学习迁移学习人工智能机器学习
一、迁移学习的核心价值1.1定义与范式演进迁移学习(TransferLearning)是通过将源领域的知识迁移到目标领域,提升目标领域模型性能的机器学习范式。其演进路径为:传统机器学习深度学习迁移学习元学习/领域自适应1.2核心优势对比方法数据需求训练成本适用场景传统训练大量标注数据高数据充足场景迁移学习少量标注数据低数据稀缺领域从头训练海量标注数据极高研究级场景1.3应用场景分析跨领域应用:自然
- 深度学习能取代机器学习吗?
之之为知知
01机器学习系列07深度学习深度学习机器学习人工智能pythonpytorchtensorflow数据挖掘
在人工智能领域,“机器学习”和“深度学习”这两个词经常被混为一谈。很多新手甚至以为只要跟AI有关的任务,都该用深度学习。但其实,它们并不是谁强谁弱的关系,而是适合不同场景的工具。这篇文章就来帮你理清楚:机器学习适合做什么?深度学习擅长什么?为什么说深度学习不能完全取代机器学习?一、先来回顾一下:机器学习vs深度学习对比维度机器学习深度学习数据依赖小数据即可训练需要大量数据特征工程需要手动设计特征自
- 人工智能机器学习深度学习中著名有用的数据集
AI数据集
人工智能机器学习深度学习
在人工智能、机器学习和深度学习领域,优质的数据集是模型训练和发展的基石。以下介绍一些当前比较有名且有用的数据集。目录图像领域自然语言处理领域语音领域其他领域图像领域MNIST数据集内容:由美国国家标准与技术研究院收集整理,包含6万张用于训练的手写数字图像、1万张用于测试验证的图像,图像为28×28像素的灰度图,像素值在0到255之间。用途:主要用于图像分类任务,特别是手写数字识别,是初学者学习图像
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC深度学习人工智能计算机视觉机器学习transformer论文阅读
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- 深度学习面试宝典
力学AI有限元
深度学习面试人工智能
DeepLearningInterviewBook⭐求职攻略自我介绍数学机器学习深度学习强化学习计算机视觉传统图像处理自然语言处理SLAM推荐算法数据结构与算法编程语言:C/C++/Python深度学习框架✏️面试经验面试技巧其它(计算机网络/Linux等)2024年AI算法岗和开发岗求职群
- 产品经理的大语言模型课 01 - 人工智能的一些基本概念
平头某
产品经理人工智能
文章目录前言人工智能机器学习深度学习一张图总结前言随着人工智能技术的爆火,我断断续续地思考:作为产品经理,在人工智能飞速发展的当下,需要了解哪些知识,才能将人工智能的技术应用到产品和业务当中?期间也学习了不少人工智能的知识,看了很多科普的性质的内容,往往又过于零散,不成体系,往往是从一个名词查起,冒出了大量陌生的名词,没有一个清晰的路径让我快速构建整个知识框架。所以只得全看一些更详细的“教程”内容
- 华为面试,机器学习深度学习知识点:
李元豪
华为面试机器学习
机器学习深度学习知识点:机器学习一般有哪些分数,对于不同的任务:分类任务:准确率(Accuracy):预测正确的样本数占总样本数的比例,公式为Accuracy=TP+TN+FP+FNTP+TN,其中TP(真正例)、TN(真反例)、FP(假正例)、FN(假反例)。精确率(查准率,Precision):在预测为正的样本中,真正为正的比例,Precision=TP+FPTP。召回率(查全率,Recall
- 机器学习入门第三集——如何完整实现一次模型训练
梯度寻优者_超
机器学习人工智能python算法大数据回归数据分析
提示:如何完整的从数据导入到最后模型训练以及模型保存,本集进行介绍。文章目录上集回顾一、数据集是什么?二、完整训练过程1.导入数据2.数据集划分3.模型训练4.模型保存以及加载总结下集预告上集回顾提示:上集已经对机器学习基础知识分类常用算法等进行了描述,这集开始是如何完整训练模型,前两集已经介绍了机器学习的通俗解释,已经常见分类,还有机器学习深度学习强化学习的关系和区别。有想看的小伙伴可以翻我主页
- 2025年第二届机器学习与神经网络国际学术会议(MLNN 2025)
分享学术科研与论文的禁小默
机器学习神经网络人工智能
重要信息官网:www.icmlnn.org时间:2025年4月22-24日地点:中国-重庆简介2025年第二届机器学习与神经网络国际学术会议(MLNN2025)围绕学习系统与神经网络的核心理论、关键技术和应用展开讨论,涵盖深度学习、计算机视觉、自然语言处理、强化学习等多个子领域,通过特邀报告、主题演讲、海报展示等形式,展示相关领域的最新研究成果和技术创新。征稿主题神经网络机器学习深度学习算法及应用
- 一文讲清楚深度学习和机器学习
平凡而伟大.
机器学习人工智能深度学习机器学习人工智能
目录1.定义机器学习(MachineLearning,ML)深度学习(DeepLearning,DL)2.工作原理机器学习深度学习3.应用场景机器学习深度学习4.主要区别5.为什么选择深度学习?6.总结深度学习和机器学习是人工智能(AI)领域中两个密切相关但有所区别的概念。要清楚地解释它们之间的关系,我们可以从定义、工作原理、应用场景以及两者的主要区别等方面进行探讨。1.定义机器学习(Machin
- 机器学习之向量化
珠峰日记
AI理论与实践机器学习人工智能
文章目录向量化是什么为什么要向量化提升计算效率简化代码与增强可读性适配模型需求怎么做向量化数据预处理特征提取特征选择向量构建机器学习与深度学习中向量化的区别数据特征提取方式机器学习深度学习模型结构与复杂度机器学习深度学习计算资源需求机器学习深度学习数据规模适应性机器学习深度学习向量化是什么向量化是把数据转化为向量形式进行表示与处理的过程。在机器学习与深度学习的范畴内,现实中的各类数据,像文本、图像
- Prompt工程:大模型沟通指南(人工智能到大模型)
Harry技术
AIprompt人工智能
文章目录人工智能到大模型机器学习深度学习大模型Prompt工程:大模型沟通的桥梁在人工智能的广袤领域中,大模型无疑是最为璀璨的明珠之一。它仿佛是一座连接人类与人工智能的桥梁,让我们能够更加深入地探索和利用人工智能的强大能力。而要实现与大模型的高效沟通,Prompt工程扮演着至关重要的角色。让我们一起走进Prompt工程的奇妙世界,探寻大模型沟通的奥秘。人工智能到大模型“人工智能是一种模拟人类智能的
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC音视频机器学习人工智能深度学习计算机视觉transformer
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- AI创业机遇:垂直领域无限可能
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能javapythonjavascriptkotlingolang架构人工智能
AI创业垂直领域机器学习深度学习自然语言处理计算机视觉无人驾驶1.背景介绍人工智能(AI)正在各行各业掀起一场革命,为创业者带来了前所未有的机遇。垂直领域,即特定行业或细分市场,正在成为AI创业的热门选择。本文将深入探讨AI在垂直领域的应用,并提供实用的指南,帮助读者把握AI创业机遇。2.核心概念与联系2.1AI与垂直领域AI在垂直领域的应用,需要理解AI与垂直领域的关系。AI可以为垂直领域提供智
- 深度学习笔记——循环神经网络RNN
好评笔记
补档深度学习rnn人工智能机器学习计算机视觉神经网络AIGC
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍面试过程中可能遇到的循环神经网络RNN知识点。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习文本特征提取的方法1.基础方法1.1词袋模型(BagofWords,BOW)工作原理举例优点缺点1.2TF-IDF(TermFrequency-InverseDocumentFr
- 机器学习笔记——特征工程
好评笔记
补档机器学习笔记人工智能AIGC深度学习计算机视觉面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的特征工程方法、正则化方法和简要介绍强化学习。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习特征工程(FzeatureEngineering)1.特征提取(FeatureExtraction)手工特征提取(ManualFeatureExtraction):自
- SD模型微调之LoRA
好评笔记
补档深度学习计算机视觉人工智能面试AIGCSDstablediffusion
大家好,这里是Goodnote(好评笔记),关注公主号Goodnote,专栏文章私信限时Free。本文是SD模型微调方法LoRA的详细介绍,包括数据集准备,模型微调过程,推理过程,优缺点等。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集文章目录热门专栏机器学习深度学习论文概念核心原理优点训练过程预训练模型加载选择微调的层LoRA优化的层Cross-Attention(跨注意力)层Self
- 基于python深度学习遥感影像地物分类与目标识别、分割实践技术应用
xiao5kou4chang6kai4
深度学习遥感勘测python深度学习分类
专题一:深度学习发展与机器学习深度学习的历史发展过程机器学习,深度学习等任务的基本处理流程梯度下降算法讲解不同初始化,学习率对梯度下降算法的实例分析从机器学习到深度学习算法专题二深度卷积网络、卷积神经网络、卷积运算的基本原理池化操作,全连接层,以及分类器的作用BP反向传播算法的理解一个简单CNN模型代码理解特征图,卷积核可视化分析专题三TensorFlow与keras介绍与入门TensorFlow
- 深度学习笔记——模型部署
好评笔记
深度学习笔记深度学习笔记人工智能transformer模型部署大模型部署大模型
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文简要概括模型部署的知识点,包括步骤和部署方式。文章目录模型部署模型部署的关键步骤常见的模型部署方式优势与挑战总结边缘端部署方案总结历史文章机器学习深度学习模型部署模型部署是指将训练好的机器学习或深度学习模型集成到生产环境中,使其能够在实际应用中处理实时数据和提供预测服务。模型部署的流程涉及模型的封装、部署环境的选择、部
- AI自动采集教学行为——用AI来做机器学习部分和深度学习部分(含torch和cuda)包含机器学习模型和bert模型的使用
东方-教育技术博主
人工智能应用人工智能机器学习深度学习
文章目录数据清洗机器学习深度学习代码没问题之后的文件下载bert环境配置太麻烦,改用飞浆的bert飞浆失败-接着bert,用谷歌AIbert的使用数据清洗要遍历当前文件夹下从1.x1sx到8.x1sx的所有文件,提取“句子”列,‘标注’列和‘上下文情境’这三列按顺序把excel中的这三列拼接在一起。合并输出成一个xlsx文件。importosimportpandasaspd#获取当前脚本所在的目录
- 【机器学习 & 深度学习】开发工具Anaconda的安装与使用
为梦而生~
机器学习python实战机器学习深度学习pythoncondapycharm人工智能
个人主页:为梦而生~关注我一起学习吧!专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络学习笔记【Python基础&机器学习】Python环境搭建(适合新手阅读的超详细教程)文章目录前言安装Anaconda关于Anaconda的介
- 机器学习笔记(3.1)
临渊——摸鱼
算法数学建模机器学习python数据挖掘
机器学习笔记系列文章目录文章目录机器学习笔记系列文章目录第三节标准库第三方库基础模块机器学习深度学习平台使用pip安装扩展包常用镜像源什么是Anaconda为什么要用Anaconda如何使用Anaconda第四节思想问题1.避免对业务的轻视2.明白可以为和不可以为业务背景与目标把握数据1.是否有数据2.有多少数据3.是什么样的数据4.标签总结第五节找到数据数据探索数据清洗1.缺失值的处理2.异常值
- 【Python基础 & 机器学习】Python环境搭建(适合新手阅读的超详细教程)
为梦而生~
机器学习python实战python机器学习开发语言人工智能数据挖掘pycharm
个人主页:为梦而生~关注我一起学习吧!重要专栏:机器学习:相对完整的机器学习基础教学!机器学习python实战:用python带你感受真实的机器学习深度学习:现代人工智能的主流技术介绍python网络爬虫从基础到实战:Python的主流应用领域之一,也可以与人工智能领域相结合的技术往期推荐:【机器学习&深度学习】神经网络简述【机器学习&深度学习】卷积神经网络简述【python爬虫开发实战&情感分析
- AI绘画探索人工智能的未来
Aileen_0v0
科技探索AI作画人工智能开源动画图形渲染游戏美术硬件架构
个人主页:Aileen_0v0热门专栏:华为鸿蒙系统学习|计算机网络|数据结构与算法个人格言:“没有罗马,那就自己创造罗马~”accusesbofsth.控告文章目录`AI绘画``前言``Al的应用领域`机器学习深度学习自然语言处理计算机视觉AI与大数据,云计算结合AIGC`Al绘画简介`游戏开发动漫图片制作广告设计艺术创作教育培训工业设计宠物行业AI绘画前言Al的发展可以追溯到20世纪50年代,
- 计算机设计大赛 垃圾邮件(短信)分类算法实现 机器学习 深度学习
iuerfee
python
文章目录0前言2垃圾短信/邮件分类算法原理2.1常用的分类器-贝叶斯分类器3数据集介绍4数据预处理5特征提取6训练分类器7综合测试结果8其他模型方法9最后0前言优质竞赛项目系列,今天要分享的是垃圾邮件(短信)分类算法实现机器学习深度学习该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分享:https:
- 计算机毕业设计选题参考 算法方向机器学习深度学习预测(博文底部xv获取)
mqdlff_python
课程设计算法机器学习毕业设计计算机毕设
基于深度学习的农业病虫害识别基于U-Net模型的细胞图像分割检测基于bert的旅游文本情感分析研究基于bert的经济文本情感分析基于PythonOpenCV的车牌定位追踪识别系统医学图像识别:基于卷积神经网络的病癌细胞识别基于word2vec+textcnn的微博评论情感分析研究基于线性回归XGBoost+LRGBDT+LR的信用卡用户逾期行为预测基于卷积神经网络的评论情感分析系统GUI界面基于b
- 【深度学习】初识深度学习
wmh1024
深度学习人工智能
初识深度学习什么是深度学习关系:人工智能机器学习深度学习卷积神经网络深度学习和机器学习的关系:机器学习:随着数据量增加会改进性能的算法深度学习:使用多层神经网络学习。深度学习是机器学习的子集。传统系统和深度学习的区别:传统编程系统:定义规则,输入数据获取输出(定义f(x)、x求得y)深度学习系统:输入答案和数据,输出规则(定义x、y求得f(x),且f(x)具有泛化性)规则f(x)规则f(x)数据x
- Python数据分析案例37——基于分位数神经网络(QRNN)的汇率预测
阡之尘埃
Python数据分析案例python神经网络深度学习概率密度估计汇率预测
案例背景我导师的研究方向是少有的做"分位数回归"方向,作为研究机器学习深度学习方向的我自然就继承了这个特色,改进出了很多特殊结合方法,我会结合各种机器学习方法和各种分位数回归的方法。之前写过分位数随机森林,分位数XGboost,分位数Lightgbm的文章:Xgboost和Lightgbm结合分位数回归(机器学习与传统统计学结合)本次带来一个小案例,分位数神经网络,神经网络是最简单的MLP架构,也
- 李宏毅机器学习-PCA
Zhuanshan_
机器学习人工智能
视频链接:李宏毅2020机器学习深度学习(完整版)国语用最直观的方式告诉你:什么是主成分分析PCA【中字】主成分分析法(PCA)|分步步骤解析看完你就懂了!无监督学习做什么无监督学习主要做两件事情:聚类&降维:比如说下图的树木,只有输入图片,没有标签,我们希望通过一个函数抽象的表达他们,于是抽出一个更抽象的表述生成器:也就是无中生有,我们有很多图片,但不知道是怎么生成的,于是需要一个好的函数,将刚
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla