- 全局修改GitLab14默认语言为中文
GitLab安装成功后默认语言是英语,只有登录后才能手动指定为中文,且这个配置只对自己生效,经查阅资料后,总结全局修改GitLab14默认语言为中文方法如下:0.进入容器如果你用Docker部署的GitLab,那么需要使用命令sudodockerexec-itgitlab/bin/bash进入容器1.修改rails配置文件打开/opt/gitlab/embedded/service/gitlab-
- 修改gitlab默认的语言
Victor刘
gitlab
文章目录网上的方法1.采用数据库触发器的方法2.登录pg库2.1查看表2.2创建function2.3创建触发器2.4修改历史数据网上的方法网上修改/opt/gitlab/embedded/service/gitlab-rails/config/application.rb的方法,我试了,没生效,没进一步研究1.采用数据库触发器的方法2.登录pg库su-gitlab-psqlpsql-h/var/
- XCZU4EV-1FBVB900E Xilinx FPGA AMD Zynq UltraScale+ MPSoC EV(Embedded Vision)
XINVRY-FPGA
arm开发fpga开发fpga嵌入式硬件硬件工程计算机视觉硬件架构
XCZU4EV-1FBVB900EXCZU4EV‑2FBVB900E属于AMD(Xilinx)ZynqUltraScale+MPSoCEV(EmbeddedVision)系列,集成四核Arm®Cortex‑A53应用处理器、双核Cortex‑R5F实时处理器与Mali‑400MP2片上GPU,辅以强大的可编程逻辑和海量DSP引擎。该器件面向视频嵌入式视觉、网络通信、工业自动化和高级数据处理等对图形
- SpringBoot + Maven 在 idea 下启动报错 Unable to start embedded Tomcat
知道的越多,不知道的越多
笔记tomcatmavenjavaspringboot
记录一个idea下启动报错UnabletostartembeddedTomcat的原因,刚遇到的时候头都大了,明明上一秒还在愉快的玩耍,下一秒就GG了【吐血】。网上看了很多文章都是说jar包冲突或者是pom文件和application.properties的问题,搞的我都迷茫了。报错日志:2021-01-1416:38:40.562[main]INFOo.s.b.c.e.tomcat.Tomcat
- RoPE:相对位置编码的旋转革命——原理、演进与大模型应用全景
大千AI助手
人工智能Python#OTHER人工智能深度学习大模型算法RoPE位置编码相对位置
“以复数旋转解锁位置关系的本质表达,让Transformer突破长度藩篱”旋转位置编码(RotaryPositionEmbedding,RoPE)是由JianlinSu等研究者于2021年提出的突破性位置编码方法,通过复数空间中的旋转操作将相对位置信息融入Transformer的自注意力机制,解决了传统位置编码在长序列建模中的外推瓶颈。该方法是当前主流大模型(如LLaMA、GPT-NeoX)的核心
- RAG、Function Call、MCP技术笔记
大佐不会说日语~
面试笔记篇笔记
核心概念理解这三种技术都是为了增强大模型能力的重要手段,但各有侧重点和应用场景。RAG(检索增强生成)RAG本质上是为大模型外接一个动态知识库。当模型需要回答问题时,先从知识库中检索相关信息,再结合检索结果生成答案。核心原理:将文档内容进行向量化存储(通常使用Embedding模型)用户提问时,将问题也向量化通过相似度计算(如欧氏距离、余弦相似度)找到最相关的文档片段将检索到的内容作为上下文传给大
- RAG面试内容整理-3. 向量检索原理与常用库(ANN、FAISS、Milvus 等)
不务正业的猿
面试LangChainAI面试职场和发展大模型RAGAI人工智能算法
向量检索利用向量空间的相似度来查找相关内容,是近年来兴起的检索技术核心。其基础是在语义嵌入(embedding)模型的支持下,将文本、图像等数据表示为高维向量,以便通过向量相似度(如余弦相似度或欧氏距离)找到内容上的邻近项。由于直接精确计算所有向量之间的距离在大规模下计算开销巨大,实际系统通常采用近似最近邻搜索(ApproximateNearestNeighbor,ANN)算法,在保证结果精度接近
- Pytorch实现细节解析:Transformer模型的Encoder与Decoder逐行代码讲解
lazycatlove
pytorchtransformer人工智能
文章目录摘要一、Transformer1.1为什么要使用attention1.2Transformer的优点二、Transformer模型Encoder和Decoder原理讲解与其Pytorch逐行实现2.1wordembedding2.2单词索引构成源句子和目标句子2.3构建positionembedding2.4构造encoder的self-attentionmask2.5构造intra-at
- Complete Guide to Integrating Live Chat Support on Your Website
adminwolf
个人开发
Integratinglivechatfunctionalityintoyourwebsiteisapowerfulwaytoenhanceuserexperienceanddrivebusinessconversions.Thisguideprovidesstep-by-stepinstructionsonhowtoseamlesslyembedanonlineconsultationfeatu
- PyTorch中的词嵌入层(nn.Embedding)详解与实践指南
慕婉0307
自然语言处理pytorchembedding人工智能
一、词嵌入(WordEmbedding)简介词嵌入是自然语言处理(NLP)中的一项核心技术,它将离散的词语映射到连续的向量空间中。通过词嵌入,语义相似的词语在向量空间中的位置也会相近。为什么需要词嵌入?解决维度灾难:传统one-hot编码维度等于词汇表大小,而词嵌入维度可自定义捕捉语义关系:通过向量空间中的距离反映词语间的语义关系迁移学习:预训练的词嵌入可以在不同任务间共享二、PyTorch中的n
- Python----大模型( RAG的向量化(embedding))
蹦蹦跳跳真可爱589
Python大模型pythonembedding开发语言人工智能
一、向量化向量化是将非结构化数据(如文本、图像等)转化为数字表示的一种过程。在RAG中,通常会使用预训练的Transformer模型(如BERT、RoBERTa等)将文本表示为高维的向量。这些向量能够捕捉到数据的语义信息,从而在向量空间中表示相似性。两段相似的文本在向量空间中将非常接近。快速检索:向量化将文本转换为向量后,可以通过向量相似度算法(如余弦相似度)快速检索与查询相关的信息。语义理解:通
- DPDK Sample Applications User Guides(42)Eventdev管道示例应用程序
超帅浩浩
SampleApplicationsUserGuidesDPDKeventdevpipeline
官方文档查看地址:http://doc.dpdk.org/guides/sample_app_ug/eventdev_pipeline.htmlPDF下载地址:https://www.intel.com/content/www/us/en/embedded/technology/packet-processing/dpdk/dpdk-sample-applications-user-guide.h
- BERT模型架构
大多_C
bert人工智能深度学习
BertModel((embeddings):BertEmbeddings((word_embeddings):Embedding(30522,768,padding_idx=0)(position_embeddings):Embedding(512,768)(token_type_embeddings):Embedding(2,768)(LayerNorm):LayerNorm((768,),e
- krpano 渲染全景视频
是菜菜的小前端啊
前端
使用krpano渲染全景视频,可渲染不同分辨率的视频。使用的krpano版本为1.19index.htmlERROR:Javascriptnotactivatedembedpano({xml:"video.xml",target:"pano",passQueryParameters:"startscene,startlookat"});video.xmlif(device.panovideosup
- Embedding与向量数据库
玖月初玖
大模型应用开发基础人工智能embedding数据库
1.Embedding是什么EmbeddingModel是一种机器学习模型,它的核心任务是将离散的、高维的符号(如单词、句子、图片、用户、商品等)转换成连续的、低维的向量(称为“嵌入”或“向量表示”),并且这个向量能有效地捕捉原始符号的语义、关系或特征。1.1通俗理解EmbeddingModel是让计算机“理解”世界的核心工具,把“文字、图片、音频”等信息变成一串有意义的数字我们称之为“向量”。类
- 【速通RAG实战:数据库】6.RAG向量数据库原理
无心水
速通RAG实战!解锁AI2.0高薪密码速通RAG实战RAG快速开发实战RAGRAG向量数据库相似度FAISSChroma
在RAG(检索增强生成)系统中,向量数据库扮演着至关重要的角色,它负责存储文本经过Embedding处理后的向量表示,并能高效地进行向量检索,以找出与查询向量最相似的文档。1.向量数据库原理1.向量表示在RAG系统里,文本首先会通过Embedding模型(如OpenAIEmbeddings、SentenceTransformers等)转化为固定维度的向量。这些向量能够捕捉文本的语义信息,使得语义相
- 打造智能资讯引擎:基于 Python 的新闻数据爬取与个性化推荐系统实战全流程解析
程序员威哥
最新爬虫实战项目python开发语言
前言:数据时代的信息洪流,如何做到“千人千面”?在信息爆炸的时代,每天都有成千上万条新闻资讯涌现。如何从海量内容中挖掘出用户感兴趣的资讯?这不仅仅是爬虫技术的问题,更是数据建模与智能推荐算法的落地挑战。本篇文章将带你从零出发,构建一个具有实际应用价值的“个性化新闻阅读推荐系统”,从数据采集(爬虫)、文本处理(NLP)、兴趣建模(TF-IDF/协同过滤/Embedding)到推荐展示,覆盖整个推荐系
- Go-Redis × 向量检索实战用 HNSW 在 Redis 中索引与查询文本 Embedding(Hash & JSON 双版本)
Hello.Reader
数据库运维缓存技术golangredisembedding
1.场景与思路痛点:把“文本内容”转成向量后,如何在本地Redis里做近似向量搜索(KNN),而不依赖外部向量数据库?方案:利用HuggingFace模型sentence-transformers/all-MiniLM-L6-v2生成384维Float32向量;借助RediSearch的HNSW索引能力,在Hash或JSON文档里存储&查询向量;用go-redisv9的高阶API(FTCreate
- springboot2.x Embedded Tomcat 配置jndi
方穹轩
对于EmbeddedTomcat的话,需要添加ServletWebServerFactory进行配置配置ServletWebServerFactory@ConfigurationpublicclassJNDIConfig{@BeanpublicServletWebServerFactorywebServerFactory(){TomcatServletWebServerFactorytomcatS
- 大模型核心概念 | 嵌入模型(Embedding)、向量模型(Vector Model)
一、核心概念解析1.1嵌入模型(Embedding)作为AI领域的核心基础技术,嵌入模型通过将非结构化数据映射为低维稠密向量,实现语义特征的深度捕捉:文本嵌入:如将语句转换为1536维向量,使"机器学习"与"深度学习"的向量余弦相似度达0.92跨模态嵌入:支持图像与文本的联合向量空间映射,如CLIP模型实现文图互搜1.2向量模型(VectorModel)作为嵌入技术的下游应用体系,主要包含两大方向
- 边缘智能革命:嵌入式机器学习如何让万物“思考”
万能小贤哥
机器学习人工智能
当智能手表精准识别你的健身动作,工业传感器预测设备故障于毫秒之间,农业传感器自动调节灌溉水量——这些并非科幻场景,而是嵌入式机器学习(EmbeddedMachineLearning,或TinyML)正在悄然重塑的现实。这场发生在设备边缘的智能革命,正将AI从云端的数据中心拉近到我们指尖的每一台设备中。一、嵌入式机器学习:定义与核心价值嵌入式机器学习是指在资源极端受限的微控制器(MCU)、微处理器(
- 摄像驱动会接触到的单词(想起来就更新)3
空与实的极致
嵌入式硬件经验分享计算机视觉视觉检测
工作单词delivers交付;传递assignment分配;任务;指派firmware固件stack栈integrate整合superspeed超高速embedded嵌入式development研发、开发;发展kit装备;配套元件;成套工具platforms平台、站台device设备、物品、器械peripheral外围设备;外围的;次要的access通道;入口;机会interface接口;界面se
- Ollama平台里最流行的embedding模型: nomic-embed-text 模型介绍和实践
skywalk8163
人工智能embedding人工智能服务器
nomic-embed-text模型介绍nomic-embed-text是一个基于SentenceTransformers库的句子嵌入模型,专门用于特征提取和句子相似度计算。该模型在多个任务上表现出色,特别是在分类、检索和聚类任务中。其核心优势在于能够生成高质量的句子嵌入,这些嵌入在语义上非常接近,从而在相似度计算和分类任务中表现优异。之所以选用这个模型,是因为在Ollama网站查找这个模型,发现
- 2025年的RAG技术发展趋势与演进
码农Q!
云计算人工智能aiagi自然语言处理语言模型
本文将分享作为大模型应用创业者的经历与观察,讨论RAG技术和市场环境在2024年的变化。一、RAG技术的演进RAG(检索增强生成)由“检索”和“大模型生成”两部分组成,而检索之前的索引创建(如chunking、embedding等)是核心基础。我们早在2021年便通过Java技术栈实现了RAG的“RA”部分。2023年中,RAG概念突然走红,并迅速在企业应用中显示出更强的实用性。1.主流架构的变化
- ModuleNotFoundError: No module named ‘pip‘解决
幼稚园的山代王
pythonpippython开发语言
错误提示D:\python-3.13.4-embed-amd64>pip-VTraceback(mostrecentcalllast):File“”,line198,in_run_module_as_mainFile“”,line88,inrun_codeFile"D:\python-3.13.4-embed-amd64\Scripts\pip.exe_main.py",line4,infromp
- 如果让计算机理解人类语言- One-hot 编码(One-hot Encoding,1950s)
如果让计算机理解人类语言-One-hot编码(One-hotEncoding,1950s)flyfish如果让计算机理解人类语言-One-hot编码(One-hotEncoding,1950s)如果让计算机理解人类语言-词袋模型(BagofWords,BoW,1970s)如果让计算机理解人类语言-Word2Vec(WordtoVector,2013)如果让计算机理解人类语言-Qwen3Embedd
- 大模型之Spring AI实战系列(三十二):Spring Boot + DeepSeek 实战指南:工具函数(Function Call)实战应用
系列篇章No.文章1大模型之SpringAI实战系列(一):基础认知篇-开启智能应用开发之旅2大模型之SpringAI实战系列(二):SpringBoot+OpenAI打造聊天应用全攻略3大模型之SpringAI实战系列(三):SpringBoot+OpenAI实现聊天应用上下文记忆功能4大模型之SpringAI实战系列(四):SpringBoot+OpenAI使用OpenAIEmbedding实
- OpenSearch 向量搜索与Qwen3-Embedding 集成示例
ZHOU_CAMP
RAG数据库dockerRAGopensearchagent
本项目演示了如何将OpenSearch的k-NN(k-NearestNeighbors)向量搜索功能与OpenAI的高级文本嵌入模型(如Qwen3-Embedding)相结合,以实现强大的语义搜索。核心概念文本嵌入(TextEmbedding):将文本(单词、句子、段落)转换为一个高维的数字向量。语义上相似的文本在向量空间中的距离会更近。Qwen3-Embedding:我们调用Qwen3-Embe
- 文献分享: BGE-M3——打通三种方式的嵌入模型
文章目录1.\textbf{1.}1.背景与导论1.1.\textbf{1.1.}1.1.研究背景1.2.\textbf{1.2.}1.2.本文的研究1.3.\textbf{1.3.}1.3.有关工作2.M3-Embedding\textbf{2.M3-Embedding}2.M3-Embedding2.1.\textbf{2.1.}2.1.模型核心:混合检索方式2.1.1.\textbf{2.1
- Neo4j 的向量搜索(Neo4jVector)和常见的向量数据库(比如 Milvus、Qdrant)之间的区别与联系
先说联系(共同点)点内容✅都支持向量检索都可以基于embedding(向量)做相似度搜索,比如给一段文本、找出最相似的若干条记录。✅都用于语义检索你可以把它们用在RAG(检索增强生成)、ChatwithDocs、智能问答、推荐系统等应用里。✅都支持批量插入、查询都可以批量向数据库中插入文本+向量,然后用向量做top-k检索(如search(k=8))。✅都和LangChain集成它们都可以通过la
- Spring的注解积累
yijiesuifeng
spring注解
用注解来向Spring容器注册Bean。
需要在applicationContext.xml中注册:
<context:component-scan base-package=”pagkage1[,pagkage2,…,pagkageN]”/>。
如:在base-package指明一个包
<context:component-sc
- 传感器
百合不是茶
android传感器
android传感器的作用主要就是来获取数据,根据得到的数据来触发某种事件
下面就以重力传感器为例;
1,在onCreate中获得传感器服务
private SensorManager sm;// 获得系统的服务
private Sensor sensor;// 创建传感器实例
@Override
protected void
- [光磁与探测]金吕玉衣的意义
comsci
这是一个古代人的秘密:现在告诉大家
信不信由你们:
穿上金律玉衣的人,如果处于灵魂出窍的状态,可以飞到宇宙中去看星星
这就是为什么古代
- 精简的反序打印某个数
沐刃青蛟
打印
以前看到一些让求反序打印某个数的程序。
比如:输入123,输出321。
记得以前是告诉你是几位数的,当时就抓耳挠腮,完全没有思路。
似乎最后是用到%和/方法解决的。
而今突然想到一个简短的方法,就可以实现任意位数的反序打印(但是如果是首位数或者尾位数为0时就没有打印出来了)
代码如下:
long num, num1=0;
- PHP:6种方法获取文件的扩展名
IT独行者
PHP扩展名
PHP:6种方法获取文件的扩展名
1、字符串查找和截取的方法
1
$extension
=
substr
(
strrchr
(
$file
,
'.'
), 1);
2、字符串查找和截取的方法二
1
$extension
=
substr
- 面试111
文强chu
面试
1事务隔离级别有那些 ,事务特性是什么(问到一次)
2 spring aop 如何管理事务的,如何实现的。动态代理如何实现,jdk怎么实现动态代理的,ioc是怎么实现的,spring是单例还是多例,有那些初始化bean的方式,各有什么区别(经常问)
3 struts默认提供了那些拦截器 (一次)
4 过滤器和拦截器的区别 (频率也挺高)
5 final,finally final
- XML的四种解析方式
小桔子
domjdomdom4jsax
在平时工作中,难免会遇到把 XML 作为数据存储格式。面对目前种类繁多的解决方案,哪个最适合我们呢?在这篇文章中,我对这四种主流方案做一个不完全评测,仅仅针对遍历 XML 这块来测试,因为遍历 XML 是工作中使用最多的(至少我认为)。 预 备 测试环境: AMD 毒龙1.4G OC 1.5G、256M DDR333、Windows2000 Server
- wordpress中常见的操作
aichenglong
中文注册wordpress移除菜单
1 wordpress中使用中文名注册解决办法
1)使用插件
2)修改wp源代码
进入到wp-include/formatting.php文件中找到
function sanitize_user( $username, $strict = false
- 小飞飞学管理-1
alafqq
管理
项目管理的下午题,其实就在提出问题(挑刺),分析问题,解决问题。
今天我随意看下10年上半年的第一题。主要就是项目经理的提拨和培养。
结合我自己经历写下心得
对于公司选拔和培养项目经理的制度有什么毛病呢?
1,公司考察,选拔项目经理,只关注技术能力,而很少或没有关注管理方面的经验,能力。
2,公司对项目经理缺乏必要的项目管理知识和技能方面的培训。
3,公司对项目经理的工作缺乏进行指
- IO输入输出部分探讨
百合不是茶
IO
//文件处理 在处理文件输入输出时要引入java.IO这个包;
/*
1,运用File类对文件目录和属性进行操作
2,理解流,理解输入输出流的概念
3,使用字节/符流对文件进行读/写操作
4,了解标准的I/O
5,了解对象序列化
*/
//1,运用File类对文件目录和属性进行操作
//在工程中线创建一个text.txt
- getElementById的用法
bijian1013
element
getElementById是通过Id来设置/返回HTML标签的属性及调用其事件与方法。用这个方法基本上可以控制页面所有标签,条件很简单,就是给每个标签分配一个ID号。
返回具有指定ID属性值的第一个对象的一个引用。
语法:
&n
- 励志经典语录
bijian1013
励志人生
经典语录1:
哈佛有一个著名的理论:人的差别在于业余时间,而一个人的命运决定于晚上8点到10点之间。每晚抽出2个小时的时间用来阅读、进修、思考或参加有意的演讲、讨论,你会发现,你的人生正在发生改变,坚持数年之后,成功会向你招手。不要每天抱着QQ/MSN/游戏/电影/肥皂剧……奋斗到12点都舍不得休息,看就看一些励志的影视或者文章,不要当作消遣;学会思考人生,学会感悟人生
- [MongoDB学习笔记三]MongoDB分片
bit1129
mongodb
MongoDB的副本集(Replica Set)一方面解决了数据的备份和数据的可靠性问题,另一方面也提升了数据的读写性能。MongoDB分片(Sharding)则解决了数据的扩容问题,MongoDB作为云计算时代的分布式数据库,大容量数据存储,高效并发的数据存取,自动容错等是MongoDB的关键指标。
本篇介绍MongoDB的切片(Sharding)
1.何时需要分片
&nbs
- 【Spark八十三】BlockManager在Spark中的使用场景
bit1129
manager
1. Broadcast变量的存储,在HttpBroadcast类中可以知道
2. RDD通过CacheManager存储RDD中的数据,CacheManager也是通过BlockManager进行存储的
3. ShuffleMapTask得到的结果数据,是通过FileShuffleBlockManager进行管理的,而FileShuffleBlockManager最终也是使用BlockMan
- yum方式部署zabbix
ronin47
yum方式部署zabbix
安装网络yum库#rpm -ivh http://repo.zabbix.com/zabbix/2.4/rhel/6/x86_64/zabbix-release-2.4-1.el6.noarch.rpm 通过yum装mysql和zabbix调用的插件还有agent代理#yum install zabbix-server-mysql zabbix-web-mysql mysql-
- Hibernate4和MySQL5.5自动创建表失败问题解决方法
byalias
J2EEHibernate4
今天初学Hibernate4,了解了使用Hibernate的过程。大体分为4个步骤:
①创建hibernate.cfg.xml文件
②创建持久化对象
③创建*.hbm.xml映射文件
④编写hibernate相应代码
在第四步中,进行了单元测试,测试预期结果是hibernate自动帮助在数据库中创建数据表,结果JUnit单元测试没有问题,在控制台打印了创建数据表的SQL语句,但在数据库中
- Netty源码学习-FrameDecoder
bylijinnan
javanetty
Netty 3.x的user guide里FrameDecoder的例子,有几个疑问:
1.文档说:FrameDecoder calls decode method with an internally maintained cumulative buffer whenever new data is received.
为什么每次有新数据到达时,都会调用decode方法?
2.Dec
- SQL行列转换方法
chicony
行列转换
create table tb(终端名称 varchar(10) , CEI分值 varchar(10) , 终端数量 int)
insert into tb values('三星' , '0-5' , 74)
insert into tb values('三星' , '10-15' , 83)
insert into tb values('苹果' , '0-5' , 93)
- 中文编码测试
ctrain
编码
循环打印转换编码
String[] codes = {
"iso-8859-1",
"utf-8",
"gbk",
"unicode"
};
for (int i = 0; i < codes.length; i++) {
for (int j
- hive 客户端查询报堆内存溢出解决方法
daizj
hive堆内存溢出
hive> select * from t_test where ds=20150323 limit 2;
OK
Exception in thread "main" java.lang.OutOfMemoryError: Java heap space
问题原因: hive堆内存默认为256M
这个问题的解决方法为:
修改/us
- 人有多大懒,才有多大闲 (评论『卓有成效的程序员』)
dcj3sjt126com
程序员
卓有成效的程序员给我的震撼很大,程序员作为特殊的群体,有的人可以这么懒, 懒到事情都交给机器去做 ,而有的人又可以那么勤奋,每天都孜孜不倦得做着重复单调的工作。
在看这本书之前,我属于勤奋的人,而看完这本书以后,我要努力变成懒惰的人。
不要在去庞大的开始菜单里面一项一项搜索自己的应用程序,也不要在自己的桌面上放置眼花缭乱的快捷图标
- Eclipse简单有用的配置
dcj3sjt126com
eclipse
1、显示行号 Window -- Prefences -- General -- Editors -- Text Editors -- show line numbers
2、代码提示字符 Window ->Perferences,并依次展开 Java -> Editor -> Content Assist,最下面一栏 auto-Activation
- 在tomcat上面安装solr4.8.0全过程
eksliang
Solrsolr4.0后的版本安装solr4.8.0安装
转载请出自出处:
http://eksliang.iteye.com/blog/2096478
首先solr是一个基于java的web的应用,所以安装solr之前必须先安装JDK和tomcat,我这里就先省略安装tomcat和jdk了
第一步:当然是下载去官网上下载最新的solr版本,下载地址
- Android APP通用型拒绝服务、漏洞分析报告
gg163
漏洞androidAPP分析
点评:记得曾经有段时间很多SRC平台被刷了大量APP本地拒绝服务漏洞,移动安全团队爱内测(ineice.com)发现了一个安卓客户端的通用型拒绝服务漏洞,来看看他们的详细分析吧。
0xr0ot和Xbalien交流所有可能导致应用拒绝服务的异常类型时,发现了一处通用的本地拒绝服务漏洞。该通用型本地拒绝服务可以造成大面积的app拒绝服务。
针对序列化对象而出现的拒绝服务主要
- HoverTree项目已经实现分层
hvt
编程.netWebC#ASP.ENT
HoverTree项目已经初步实现分层,源代码已经上传到 http://hovertree.codeplex.com请到SOURCE CODE查看。在本地用SQL Server 2008 数据库测试成功。数据库和表请参考:http://keleyi.com/a/bjae/ue6stb42.htmHoverTree是一个ASP.NET 开源项目,希望对你学习ASP.NET或者C#语言有帮助,如果你对
- Google Maps API v3: Remove Markers 移除标记
天梯梦
google maps api
Simply do the following:
I. Declare a global variable:
var markersArray = [];
II. Define a function:
function clearOverlays() {
for (var i = 0; i < markersArray.length; i++ )
- jQuery选择器总结
lq38366
jquery选择器
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
- 基础数据结构和算法六:Quick sort
sunwinner
AlgorithmQuicksort
Quick sort is probably used more widely than any other. It is popular because it is not difficult to implement, works well for a variety of different kinds of input data, and is substantially faster t
- 如何让Flash不遮挡HTML div元素的技巧_HTML/Xhtml_网页制作
刘星宇
htmlWeb
今天在写一个flash广告代码的时候,因为flash自带的链接,容易被当成弹出广告,所以做了一个div层放到flash上面,这样链接都是a触发的不会被拦截,但发现flash一直处于div层上面,原来flash需要加个参数才可以。
让flash置于DIV层之下的方法,让flash不挡住飘浮层或下拉菜单,让Flash不档住浮动对象或层的关键参数:wmode=opaque。
方法如下:
- Mybatis实用Mapper SQL汇总示例
wdmcygah
sqlmysqlmybatis实用
Mybatis作为一个非常好用的持久层框架,相关资料真的是少得可怜,所幸的是官方文档还算详细。本博文主要列举一些个人感觉比较常用的场景及相应的Mapper SQL写法,希望能够对大家有所帮助。
不少持久层框架对动态SQL的支持不足,在SQL需要动态拼接时非常苦恼,而Mybatis很好地解决了这个问题,算是框架的一大亮点。对于常见的场景,例如:批量插入/更新/删除,模糊查询,多条件查询,联表查询,