Description
We will use the following (standard) definitions from graph theory. Let
V be a nonempty and finite set, its elements being called vertices (or nodes). Let
E be a subset of the Cartesian product
V×V, its elements being called edges. Then
G=(V,E) is called a directed graph.
Let
n be a positive integer, and let
p=(e1,...,en) be a sequence of length
n of edges
ei∈E such that
ei=(vi,vi+1) for a sequence of vertices
(v1,...,vn+1). Then
p is called a path from vertex
v1 to vertex
vn+1 in
G and we say that
vn+1 is reachable from
v1, writing
(v1→vn+1).
Here are some new definitions. A node
v in a graph
G=(V,E) is called a sink, if for every node
w in
G that is reachable from
v,
v is also reachable from
w. The bottom of a graph is the subset of all nodes that are sinks, i.e.,
bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.
Input
The input contains several test cases, each of which corresponds to a directed graph
G. Each test case starts with an integer number
v, denoting the number of vertices of
G=(V,E), where the vertices will be identified by the integer numbers in the set
V={1,...,v}. You may assume that
1<=v<=5000. That is followed by a non-negative integer
e and, thereafter,
e pairs of vertex identifiers
v1,w1,...,ve,we with the meaning that
(vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.
Output
For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.
Sample Input
3 3
1 3 2 3 3 1
2 1
1 2
0
Sample Output
1 3
2
Source
题意:求没有出度的强连通分量的点。
#include <stdio.h>
#include <string.h>
#define MAXN 5001
int m;
int cnt;
struct node{
int to,next;
}edge[MAXN*MAXN];
int temp[MAXN];
int head[MAXN];
int dfn[MAXN];
int low[MAXN];
int sta[MAXN];
int flag[MAXN];
void addedge(int u, int v){
edge[cnt].to=v;
edge[cnt].next=head[u];
head[u]=cnt++;
}
int min(int a, int b){
if(a<b)return a;
else return b;
}
int tarbfs(int k ,int lay, int& scc_num){
temp[k]=1;
low[k]=lay;
dfn[k]=lay;
sta[++m]=k;
for(int i=head[k]; i!=-1; i=edge[i].next){
if(temp[edge[i].to]==0){
tarbfs(edge[i].to,++lay,scc_num);
}
if(temp[edge[i].to]==1)low[k]=min(low[k],low[edge[i].to]);
}
if(dfn[k]==low[k]){
++scc_num;
do{
low[sta[m]]=scc_num;
temp[sta[m]]=2;
}while(sta[m--]!=k);
}
return 0;
}
int tarjan(int n){
int scc_num=0;
int lay=1;
m=0;
memset(temp,0,sizeof(temp));
memset(low,0,sizeof(low));
for(int i=1; i<=n; i++){
if(temp[i]==0)tarbfs(i,lay,scc_num);
}
return scc_num;
}
int main(int argc, char *argv[])
{
int n,t,v,u;
cnt=0;
while(scanf("%d",&n),n){
scanf("%d",&t);
memset(head,-1,sizeof(head));
memset(flag,0,sizeof(flag));
for(int i=0; i<t; i++){
scanf("%d %d",&v,&u);
addedge(v,u);
}
tarjan(n);
for(int i=1; i<=n; i++){
for(int j=head[i]; j!=-1; j=edge[j].next){
if(low[edge[j].to]!=low[i]){
flag[low[i]]=1;
break;
}
}
}
for(int i=1; i<=n; i++){
if(!flag[low[i]]){
if(i!=n){
printf("%d ",i);
}else{
printf("%d",i);
}
}
}
printf("\n");
}
return 0;
}