- 基于Python引擎的PP-OCR模型库推理
张欣-男
pythonocr开发语言PaddleOCRPaddlePaddle
基于Python引擎的PP-OCR模型库推理1.文本检测模型推理#下载超轻量中文检测模型:wgethttps://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tartarxfch_PP-OCRv3_det_infer.tarpython3tools/infer/predict_det.py--image_dir=".
- Milvus 实战全流程
学习路径总览1.Milvus基础知识什么是向量数据库?Milvus的核心概念(collection、field、index、partition、segment)Milvus和Faiss、Annoy、HNSW的区别2.安装与部署Docker快速部署Milvus(推荐)本地开发环境安装使用MilvusLite本地测试3.数据建模与管理创建Collection与Schema定义(包含向量字段和元数据字段
- Go-Faiss安装教程
LukJH
golangfaiss开发语言
Go-Faiss安装教程本文主要讲述如何解决以下问题autotunefaiss/c_api/AutoTune_c.h:Nosuchfileordirectory5|#include|^~~~~~~~~~~~~~~~~~~~~~~~~~1.正常安装这里是按照官网的说法来安装go-faiss。gitclonehttps://github.com/facebookresearch/faiss.gitcd
- sahi+yolov8实现图像切片推理
文章目录前言一、SAHI介绍切片推理兼容性设计二、使用步骤图像切片推理与结果融合代码示例结果对比总结前言本文记录项目中涉及到了无人机正射图像的推理(通常8000像素*8000像素以上),由于模型推理尺寸是640*640的,如果直接整图送入模型推理,推理效果极差,可以考虑采用多个切片进行分别进行推理,最后合并推理结果的方式。一、SAHI介绍SAHI(SlicingAidedHyperInferenc
- RAG面试内容整理-3. 向量检索原理与常用库(ANN、FAISS、Milvus 等)
不务正业的猿
面试LangChainAI面试职场和发展大模型RAGAI人工智能算法
向量检索利用向量空间的相似度来查找相关内容,是近年来兴起的检索技术核心。其基础是在语义嵌入(embedding)模型的支持下,将文本、图像等数据表示为高维向量,以便通过向量相似度(如余弦相似度或欧氏距离)找到内容上的邻近项。由于直接精确计算所有向量之间的距离在大规模下计算开销巨大,实际系统通常采用近似最近邻搜索(ApproximateNearestNeighbor,ANN)算法,在保证结果精度接近
- Python----大模型( langchain部署简单rag应用)
蹦蹦跳跳真可爱589
大模型Pythonlangchain人工智能python
一、RetrievalQA链实现加载本地文本文件并分割处理使用嵌入模型将文本转换为向量表示构建向量数据库(FAISS)实现高效相似性检索结合检索结果和大语言模型生成回答特点说明优势体现模块化封装LangChain提供标准化组件快速搭建原型系统自动化流程内置文档处理、检索、生成流水线减少开发工作量中文优化使用bge-zh嵌入模型中文语义理解更准确本地化部署模型和API均在本地运行数据隐私有保障导入依
- Triton Inference Server 架构与前后处理方案梳理
TritonInferenceServer架构与前后处理方案梳理文章目录TritonInferenceServer架构与前后处理方案梳理0引言1client方案--自己在client端增加前处理和后处理1.1client的README总结1.2client模块解析1.2.1整体目录结构1.2.2client/src/c++/library文件夹1.2.3client/src/c++/example
- 【FAISS助力基于本地DeepSeek构建管理个性化知识库:从原理到实战详解】
若兰幽竹
#大模型大模型向量化数据库FAISS
FAISS助力基于本地DeepSeek构建管理个性化知识库:从原理到实战详解一、FAISS简介二、系统架构图三、工作原理图四、关键组件与核心代码解析1.多格式文件处理2.智能分块与向量化3.多用户隔离设计4.高效查询流程5.性能优化设计6.向量生成与存储7.文档删除实现8.多用户查询接口五、增删改查操作流程图1.添加文档流程图2.删除文档流程图3.查询文档流程图六、实际应用示例七、性能优化建议八、
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- 【RAG专题】如何选择合适的RAG架构?
星际棋手
人工智能
选择适合的RAG架构需结合自身业务需求、数据特点、性能要求等因素综合判断,以下是关键考量维度及对应架构选择建议:1.按数据规模与类型选择•小规模、单一类型数据(如纯文本文档库):适合基础单阶段检索架构(检索模块+生成模块)。◦检索:用轻量级嵌入模型(如BGE-base、all-MiniLM)+简单向量数据库(如FAISS)。◦生成:搭配中小型LLM(如Llama2-7B、Mistral),无需复杂
- LangChain教程11:LangChain高效检索器最佳实践
Cachel wood
LLM和AIGClangchain
文章目录相似性搜索底层原理K-MeansHierarchicalNavigableSmallWorlds(HNSW)FAISSPineconeLance总结相似性搜索底层原理FAISS相似度匹配Pinecone索引检索Lance向量持久化存储总结相似性搜索(SimilaritySearch)既然我们知道了可以通过比较向量之间的距离来判断它们的相似度,那么如何将它应用到真实的场景中呢?如果想要在一个
- PyTorch torch.no_grad() 指南(笔记)
拉拉拉拉拉拉拉马
pytorch人工智能python笔记深度学习
PyTorchtorch.no_grad()权威在PyTorch深度学习框架中,高效的显存管理对于训练复杂模型和执行大规模推理任务至关重要。显存不足(OutOfMemory,OOM)错误是开发者经常面临的挑战之一。torch.no_grad()作为PyTorch提供的一个核心工具,能够在推理(inference)和验证(validation)阶段显著优化显存使用并提升计算速度。本报告旨在全面、深入
- 【vLLM 学习】Encoder Decoder Multimodal
HyperAI超神经
vLLMvLLMKV缓存大语言模型推理加速内存管理开源项目在线教程
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/*在线运行vLLM入门教程:零基础分步指南源码examples/offline_inference/encoder_decoder_multimodal.py#SPDX-License-Identifier:Apach
- vLLM快速入门:开启高效推理与部署之旅
在如今这个人工智能飞速发展的时代,语言模型的应用已经深入到我们生活的方方面面,从智能聊天机器人到文本生成工具,都离不开强大的语言模型技术支持。而vLLM作为一个专注于高效推理和部署的开源项目,正在为研究人员和开发人员提供一种全新的解决方案,让语言模型的使用变得更加便捷、高效。初识vLLM:背景与意义vLLM(VeryLargeLanguageModelInference)是一个专注于大型语言模型推
- 英伟达Triton 推理服务详解
leo0308
基础知识机器人Triton人工智能
1.TritonInferenceServer简介TritonInferenceServer(简称Triton,原名NVIDIATensorRTInferenceServer)是英伟达推出的一个开源、高性能的推理服务器,专为AI模型的部署和推理服务而设计。它支持多种深度学习框架和硬件平台,能够帮助开发者和企业高效地将AI模型部署到生产环境中。Triton主要用于模型推理服务化,即将训练好的模型通过
- 【vLLM 学习】Eagle
vLLM是一款专为大语言模型推理加速而设计的框架,实现了KV缓存内存几乎零浪费,解决了内存管理瓶颈问题。更多vLLM中文文档及教程可访问→https://vllm.hyper.ai/*在线运行vLLM入门教程:零基础分步指南源码examples/offline_inference/eagle.py#SPDX-License-Identifier:Apache-2.0importargparseim
- 企业级多模型服务架构(MaaS)私有部署实战指南:统一调度、模型隔离与服务编排全路径解析
观熵
架构人工智能私有化部署
企业级多模型服务架构(MaaS)私有部署实战指南:统一调度、模型隔离与服务编排全路径解析关键词:多模型服务架构、MaaS、私有化部署、模型管理、推理调度、模型编排、TritonInferenceServer、DeepSeek、模型隔离、企业级AI平台摘要:随着企业对多任务、多模型能力的需求日益增长,MaaS(Model-as-a-Service)架构已成为私有部署中的关键支撑技术之一。该文聚焦当前
- 【机器学习笔记 Ⅱ】4 神经网络中的推理
推理(Inference)是神经网络在训练完成后利用学到的参数对新数据进行预测的过程。与训练阶段不同,推理阶段不计算梯度也不更新权重,仅执行前向传播。以下是其实现原理和代码示例的完整解析:1.推理的核心步骤加载训练好的模型参数(权重和偏置)。前向传播:输入数据逐层计算,得到输出。后处理:根据任务类型解析输出(如分类取概率最大值,回归直接输出)。2.代码实现(Python+NumPy)(1)定义模型
- 使用 C++/Faiss 加速海量 MFCC 特征的相似性搜索
whoarethenext
c++faiss开发语言
使用C++/Faiss加速海量MFCC特征的相似性搜索引言在现代音频处理应用中,例如大规模声纹识别(SpeakerRecognition)、音乐信息检索(MusicInformationRetrieval)或音频事件检测(AudioEventDetection),我们通常需要从海量的音频库中快速找到与给定查询音频最相似的样本。这个过程的核心技术是对音频内容进行特征提取和高效的相似性搜索。MFCC(
- 推荐与广告区别
ActionReaction
TheDifferencebetweenaRecommendationandanAdAquickthoughtregardingFacebook’snewSocialAdsplatform.Arecommendationissomethingyougetfromsomeonewhoknowssomethingaboutyou.Theyhaveseenanitemofinterestandthoug
- Spring AI 第二讲 之 Chat Model API 第五节HuggingFace Chat
HuggingFaceInferenceEndpoints允许您在云中部署和提供机器学习模型,并通过API对其进行访问。开始使用有关HuggingFaceInferenceEndpoints的更多详细信息,请访问此处。前提条件添加spring-ai-huggingface依赖关系:org.springframework.aispring-ai-huggingface获取HuggingFaceAPI
- ppocrv5训练参数设置完整配置(实测在2080ti可成功运行且f1>85%)
Global:model_name:PP-OCRv5_server_det#Tousestaticmodelforinference.debug:falseuse_gpu:trueepoch_num:&epoch_num500log_smooth_window:20print_batch_step:5save_model_dir:./output/PP-OCRv5_server_detsave_e
- @Bean属性的destroyMethod解释
后会无期77
springbootspring
Bean如何销毁在Spring中,destroyMethod="(inferred)"是@Bean注解的一个特性,表示Spring会自动推断Bean的销毁方法,而无需显式指定。这是Spring4.3+版本引入的默认行为,旨在简化配置。1.destroyMethod="(inferred)"的含义作用:Spring会自动检查Bean是否有常见的销毁方法(如close()、shutdown()),并在
- YOLO 推理部署全方案」:一文掌握部署方式与性能对比!
要努力啊啊啊
计算机视觉YOLO目标跟踪计算机视觉目标检测人工智能
YOLO的推理部署方法全景指南YOLO系列模型经过训练后,通常需要部署到线上环境中进行推理(inference)。下面是常见的YOLO推理部署方式:1️⃣PyTorch原生部署使用原始PyTorch模型.pt文件直接调用model(input)进行推理✅优点:简单、灵活、易于调试❌缺点:推理速度较慢,不适合生产环境2️⃣ONNX导出+推理将YOLO模型导出为.onnx格式使用ONNXRuntime
- FAISS 简介及其与 GPT 的对接(RAG)
言之。
AIfaissgpteasyui
什么是FAISS?FAISS(FacebookAISimilaritySearch)是FacebookAI团队开发的一个高效的相似性搜索和密集向量聚类的库。它主要用于:大规模向量相似性搜索高维向量最近邻检索向量聚类https://github.com/facebookresearch/faissFAISS特别适合处理高维向量数据,能够快速找到与查询向量最相似的向量,广泛应用于推荐系统、图像检索、自
- LlamaIndex + 智谱大模型GLM 实现智能代理(Agent)
不吃辣的陈
人工智能pythonlangchainfaiss自然语言处理
LlamaIndex+智谱大模型GLM实现智能代理(Agent)文章目录LlamaIndex+智谱大模型GLM实现智能代理(Agent)前言一、模型加载二、向量数据库加载1.向量库加载2.向量库生成三、方法创建1.创建FAISS查询引擎适配器(本地外挂知识库查询)2.数学计算工具函数(计算器)3.WebSearch工具(网络搜索)4.手机号码归属地信息(号码归属地工具)四、FunctionTool
- YOLOv12_ultralytics-8.3.145_2025_5_27部分代码阅读笔记-torch_utils.py
红色的山茶花
YOLO笔记深度学习
torch_utils.pyultralytics\utils\torch_utils.py目录torch_utils.py1.所需的库和模块2.defsmart_inference_mode():3.defautocast(enabled:bool,device:str="cuda"):4.deftime_sync():5.deffuse_conv_and_bn(conv,bn):6.deffu
- 使用 Xinference 命令行工具(xinference launch)部署 Nanonets-OCR-s
没刮胡子
Linux服务器技术人工智能AI软件开发技术实战专栏ocr
使用Xinference命令行工具(xinferencelaunch)部署Nanonets-OCR-s一、核心优势与适用场景通过xinferencelaunch命令可直接在命令行完成模型部署,无需编写Python代码,适合快速验证或生产环境批量部署。二、部署步骤:从命令行启动模型1.确认环境与依赖已安装Xinference:pipinstall"xinference[all]"GPU显存≥9GB(
- 141G显存H20单机DeepSeek-R1满血FP8版性能测试
#环境参数#H20141G单机8卡,CUDA12.4,vLLMv0.8.3,flashinferv0.2.2#服务化命令#基于知乎大神的推荐出装与前期H800双机生产环境测试,在H20上开启EP、MLA等核心优化参数,实现推理吞吐性能最优吞吐量破10000tokens/s,VLLM0.8.1版本驱动下的Deepseek-r1671Bhttps://zhuanlan.zhihu.com/p/1887
- 大模型的“Tomcat”:一文读懂AI推理引擎(Inference Engine)
人工智能
本文已收录在Github,关注我,紧跟本系列专栏文章,咱们下篇再续!魔都架构师|全网30W技术追随者大厂分布式系统/数据中台实战专家主导交易系统百万级流量调优&车联网平台架构AIGC应用开发先行者|区块链落地实践者以技术驱动创新,我们的征途是改变世界!实战干货:编程严选网1推理引擎是啥?从熟悉的“服务器”说起,想象你用Java写好了一个业务应用,如订单处理服务,打成一个JAR或WAR包。这包能直接
- html
周华华
html
js
1,数组的排列
var arr=[1,4,234,43,52,];
for(var x=0;x<arr.length;x++){
for(var y=x-1;y<arr.length;y++){
if(arr[x]<arr[y]){
&
- 【Struts2 四】Struts2拦截器
bit1129
struts2拦截器
Struts2框架是基于拦截器实现的,可以对某个Action进行拦截,然后某些逻辑处理,拦截器相当于AOP里面的环绕通知,即在Action方法的执行之前和之后根据需要添加相应的逻辑。事实上,即使struts.xml没有任何关于拦截器的配置,Struts2也会为我们添加一组默认的拦截器,最常见的是,请求参数自动绑定到Action对应的字段上。
Struts2中自定义拦截器的步骤是:
- make:cc 命令未找到解决方法
daizj
linux命令未知make cc
安装rz sz程序时,报下面错误:
[root@slave2 src]# make posix
cc -O -DPOSIX -DMD=2 rz.c -o rz
make: cc:命令未找到
make: *** [posix] 错误 127
系统:centos 6.6
环境:虚拟机
错误原因:系统未安装gcc,这个是由于在安
- Oracle之Job应用
周凡杨
oracle job
最近写服务,服务上线后,需要写一个定时执行的SQL脚本,清理并更新数据库表里的数据,应用到了Oracle 的 Job的相关知识。在此总结一下。
一:查看相关job信息
1、相关视图
dba_jobs
all_jobs
user_jobs
dba_jobs_running 包含正在运行
- 多线程机制
朱辉辉33
多线程
转至http://blog.csdn.net/lj70024/archive/2010/04/06/5455790.aspx
程序、进程和线程:
程序是一段静态的代码,它是应用程序执行的蓝本。进程是程序的一次动态执行过程,它对应了从代码加载、执行至执行完毕的一个完整过程,这个过程也是进程本身从产生、发展至消亡的过程。线程是比进程更小的单位,一个进程执行过程中可以产生多个线程,每个线程有自身的
- web报表工具FineReport使用中遇到的常见报错及解决办法(一)
老A不折腾
web报表finereportjava报表报表工具
FineReport使用中遇到的常见报错及解决办法(一)
这里写点抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、address pool is full:
含义:地址池满,连接数超过并发数上
- mysql rpm安装后没有my.cnf
林鹤霄
没有my.cnf
Linux下用rpm包安装的MySQL是不会安装/etc/my.cnf文件的,
至于为什么没有这个文件而MySQL却也能正常启动和作用,在这儿有两个说法,
第一种说法,my.cnf只是MySQL启动时的一个参数文件,可以没有它,这时MySQL会用内置的默认参数启动,
第二种说法,MySQL在启动时自动使用/usr/share/mysql目录下的my-medium.cnf文件,这种说法仅限于r
- Kindle Fire HDX root并安装谷歌服务框架之后仍无法登陆谷歌账号的问题
aigo
root
原文:http://kindlefireforkid.com/how-to-setup-a-google-account-on-amazon-fire-tablet/
Step 4: Run ADB command from your PC
On the PC, you need install Amazon Fire ADB driver and instal
- javascript 中var提升的典型实例
alxw4616
JavaScript
// 刚刚在书上看到的一个小问题,很有意思.大家一起思考下吧
myname = 'global';
var fn = function () {
console.log(myname); // undefined
var myname = 'local';
console.log(myname); // local
};
fn()
// 上述代码实际上等同于以下代码
m
- 定时器和获取时间的使用
百合不是茶
时间的转换定时器
定时器:定时创建任务在游戏设计的时候用的比较多
Timer();定时器
TImerTask();Timer的子类 由 Timer 安排为一次执行或重复执行的任务。
定时器类Timer在java.util包中。使用时,先实例化,然后使用实例的schedule(TimerTask task, long delay)方法,设定
- JDK1.5 Queue
bijian1013
javathreadjava多线程Queue
JDK1.5 Queue
LinkedList:
LinkedList不是同步的。如果多个线程同时访问列表,而其中至少一个线程从结构上修改了该列表,则它必须 保持外部同步。(结构修改指添加或删除一个或多个元素的任何操作;仅设置元素的值不是结构修改。)这一般通过对自然封装该列表的对象进行同步操作来完成。如果不存在这样的对象,则应该使用 Collections.synchronizedList 方
- http认证原理和https
bijian1013
httphttps
一.基础介绍
在URL前加https://前缀表明是用SSL加密的。 你的电脑与服务器之间收发的信息传输将更加安全。
Web服务器启用SSL需要获得一个服务器证书并将该证书与要使用SSL的服务器绑定。
http和https使用的是完全不同的连接方式,用的端口也不一样,前者是80,后
- 【Java范型五】范型继承
bit1129
java
定义如下一个抽象的范型类,其中定义了两个范型参数,T1,T2
package com.tom.lang.generics;
public abstract class SuperGenerics<T1, T2> {
private T1 t1;
private T2 t2;
public abstract void doIt(T
- 【Nginx六】nginx.conf常用指令(Directive)
bit1129
Directive
1. worker_processes 8;
表示Nginx将启动8个工作者进程,通过ps -ef|grep nginx,会发现有8个Nginx Worker Process在运行
nobody 53879 118449 0 Apr22 ? 00:26:15 nginx: worker process
- lua 遍历Header头部
ronin47
lua header 遍历
local headers = ngx.req.get_headers()
ngx.say("headers begin", "<br/>")
ngx.say("Host : ", he
- java-32.通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小(两数组的差最小)。
bylijinnan
java
import java.util.Arrays;
public class MinSumASumB {
/**
* Q32.有两个序列a,b,大小都为n,序列元素的值任意整数,无序.
*
* 要求:通过交换a,b中的元素,使[序列a元素的和]与[序列b元素的和]之间的差最小。
* 例如:
* int[] a = {100,99,98,1,2,3
- redis
开窍的石头
redis
在redis的redis.conf配置文件中找到# requirepass foobared
把它替换成requirepass 12356789 后边的12356789就是你的密码
打开redis客户端输入config get requirepass
返回
redis 127.0.0.1:6379> config get requirepass
1) "require
- [JAVA图像与图形]现有的GPU架构支持JAVA语言吗?
comsci
java语言
无论是opengl还是cuda,都是建立在C语言体系架构基础上的,在未来,图像图形处理业务快速发展,相关领域市场不断扩大的情况下,我们JAVA语言系统怎么从这么庞大,且还在不断扩大的市场上分到一块蛋糕,是值得每个JAVAER认真思考和行动的事情
- 安装ubuntu14.04登录后花屏了怎么办
cuiyadll
ubuntu
这个情况,一般属于显卡驱动问题。
可以先尝试安装显卡的官方闭源驱动。
按键盘三个键:CTRL + ALT + F1
进入终端,输入用户名和密码登录终端:
安装amd的显卡驱动
sudo
apt-get
install
fglrx
安装nvidia显卡驱动
sudo
ap
- SSL 与 数字证书 的基本概念和工作原理
darrenzhu
加密ssl证书密钥签名
SSL 与 数字证书 的基本概念和工作原理
http://www.linuxde.net/2012/03/8301.html
SSL握手协议的目的是或最终结果是让客户端和服务器拥有一个共同的密钥,握手协议本身是基于非对称加密机制的,之后就使用共同的密钥基于对称加密机制进行信息交换。
http://www.ibm.com/developerworks/cn/webspher
- Ubuntu设置ip的步骤
dcj3sjt126com
ubuntu
在单位的一台机器完全装了Ubuntu Server,但回家只能在XP上VM一个,装的时候网卡是DHCP的,用ifconfig查了一下ip是192.168.92.128,可以ping通。
转载不是错:
Ubuntu命令行修改网络配置方法
/etc/network/interfaces打开后里面可设置DHCP或手动设置静态ip。前面auto eth0,让网卡开机自动挂载.
1. 以D
- php包管理工具推荐
dcj3sjt126com
PHPComposer
http://www.phpcomposer.com/
Composer是 PHP 用来管理依赖(dependency)关系的工具。你可以在自己的项目中声明所依赖的外部工具库(libraries),Composer 会帮你安装这些依赖的库文件。
中文文档
入门指南
下载
安装包列表
Composer 中国镜像
- Gson使用四(TypeAdapter)
eksliang
jsongsonGson自定义转换器gsonTypeAdapter
转载请出自出处:http://eksliang.iteye.com/blog/2175595 一.概述
Gson的TypeAapter可以理解成自定义序列化和返序列化 二、应用场景举例
例如我们通常去注册时(那些外国网站),会让我们输入firstName,lastName,但是转到我们都
- JQM控件之Navbar和Tabs
gundumw100
htmlxmlcss
在JQM中使用导航栏Navbar是简单的。
只需要将data-role="navbar"赋给div即可:
<div data-role="navbar">
<ul>
<li><a href="#" class="ui-btn-active&qu
- 利用归并排序算法对大文件进行排序
iwindyforest
java归并排序大文件分治法Merge sort
归并排序算法介绍,请参照Wikipeida
zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F
基本思想:
大文件分割成行数相等的两个子文件,递归(归并排序)两个子文件,直到递归到分割成的子文件低于限制行数
低于限制行数的子文件直接排序
两个排序好的子文件归并到父文件
直到最后所有排序好的父文件归并到输入
- iOS UIWebView URL拦截
啸笑天
UIWebView
本文译者:candeladiao,原文:URL filtering for UIWebView on the iPhone说明:译者在做app开发时,因为页面的javascript文件比较大导致加载速度很慢,所以想把javascript文件打包在app里,当UIWebView需要加载该脚本时就从app本地读取,但UIWebView并不支持加载本地资源。最后从下文中找到了解决方法,第一次翻译,难免有
- 索引的碎片整理SQL语句
macroli
sql
SET NOCOUNT ON
DECLARE @tablename VARCHAR (128)
DECLARE @execstr VARCHAR (255)
DECLARE @objectid INT
DECLARE @indexid INT
DECLARE @frag DECIMAL
DECLARE @maxfrag DECIMAL
--设置最大允许的碎片数量,超过则对索引进行碎片
- Angularjs同步操作http请求with $promise
qiaolevip
每天进步一点点学习永无止境AngularJS纵观千象
// Define a factory
app.factory('profilePromise', ['$q', 'AccountService', function($q, AccountService) {
var deferred = $q.defer();
AccountService.getProfile().then(function(res) {
- hibernate联合查询问题
sxj19881213
sqlHibernateHQL联合查询
最近在用hibernate做项目,遇到了联合查询的问题,以及联合查询中的N+1问题。
针对无外键关联的联合查询,我做了HQL和SQL的实验,希望能帮助到大家。(我使用的版本是hibernate3.3.2)
1 几个常识:
(1)hql中的几种join查询,只有在外键关联、并且作了相应配置时才能使用。
(2)hql的默认查询策略,在进行联合查询时,会产
- struts2.xml
wuai
struts
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configuration 2.3//EN"
"http://struts.apache