- cuda编程python接口_使用Python写CUDA程序的方法
weixin_39822184
cuda编程python接口
使用Python写CUDA程序有两种方式:*Numba*PyCUDAnumbapro现在已经不推荐使用了,功能被拆分并分别被集成到accelerate和Numba了。例子numbaNumba通过及时编译机制(JIT)优化Python代码,Numba可以针对本机的硬件环境进行优化,同时支持CPU和GPU的优化,并且可以和Numpy集成,使Python代码可以在GPU上运行,只需在函数上方加上相关的指
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- CIANNA由天体物理学家提供/为天体物理学家提供的卷积交互式人工神经网络
struggle2025
神经网络
一、软件介绍文末提供程序和源码下载CIANNA是一个通用的深度学习框架,主要用于天文数据分析。根据天体物理问题解决的相关性添加功能和优化。CIANNA可用于为各种任务构建和训练大型神经网络模型,并提供高级Python接口(类似于keras、pytorch等)。CIANNA的特点之一是它定制实施了受YOLO启发的对象探测器,用于2D或3D射电天文数据产品中的星系探测。该框架通过低级CUDA编程完全实
- CUDA编程:优化GPU并行处理与内存管理
Omoo
CUDAGPU并行处理线程协作内存管理硬件限制
背景简介CUDA是NVIDIA推出的一种通用并行计算架构,它利用GPU的强大计算能力来解决复杂的计算问题。在本书的第12章中,我们深入探讨了CUDA编程的关键概念,包括线程间的协作、内存分配与管理以及如何应对硬件限制。CUDA中的线程协作与内存管理在GPU上进行编程时,我们需要处理内存分配、数据传输以及内核(kernel)的调用等任务。CUDA提供了一系列的API来帮助开发者管理这些资源。在提供的
- 【CUDA编程】Dim3
量化投资和人工智能
CUDA昇腾CUDA人工智能深度学习c++云计算
dim3是CUDA编程中用于定义线程块(Block)和网格(Grid)维度的三维向量结构体,本质是包含三个无符号整数成员(x、y、z)的轻量级容器。以下是其核心特性与用法详解:一、核心定义与结构structdim3{unsignedintx;//第一维度(宽度)unsignedinty;//第二维度(高度)unsignedintz;//第三维度(深度)};默认值规则:未显式赋值的维度默认为1。示例
- 【CUDA编程】OptionalCUDAGuard详解
量化投资和人工智能
CUDA大模型人工智能机器学习CUDA云计算pythonc++
OptionalCUDAGuard是PyTorch的CUDA工具库(c10/cuda)中用于安全管理GPU设备上下文的RAII(ResourceAcquisitionIsInitialization)类。其核心作用是在特定代码块中临时切换GPU设备,并在退出作用域时自动恢复原设备状态,尤其适用于设备可能为“未指定”(nullopt)的场景。以下从作用、原理、用法和典型场景详细解析:⚙️一、核心作用
- 【CUDA编程】 C10_CUDA_CHECK 宏详细解析
量化投资和人工智能
CUDACUDA人工智能云计算大模型
以下是对C10_CUDA_CHECK宏的详细解析,结合CUDA错误处理机制和PyTorch框架设计进行说明:一、宏定义结构解析#defineC10_CUDA_CHECK(EXPR)\do{\constcudaError_t__err=EXPR;\c10::cuda::c10_cuda_check_implementation(\static_cast(__err),\__FILE__,\__fun
- 第四篇:Python 高级-高性能计算加速秘籍
程序员勇哥
Python全套教程python开发语言
第四篇:Python高级-高性能计算加速秘籍在当今数据量与计算需求日益增长的环境下,提升Python程序的计算性能显得尤为关键。本篇将深入探讨向量化计算的深度优化以及如何借助CUDA编程与GPU加速来显著提升Python计算效率。一、向量化计算的深度优化(一)利用Numba实现复杂算法的高效向量化Numba简介Numba是一个用于Python的即时编译器(JIT),它能够将Python函数转换为机
- Python中使用CUDA/GPU的方式比较
东北豆子哥
CUDAHPC/MPIpythonCUDA
Python中使用CUDA/GPU的方式比较在Python中利用GPU加速计算有多种方式,以下是主要的几种方法及其比较:1.CUDA原生开发方式:使用NVIDIA提供的CUDAC/C++API开发内核通过PyCUDA或Numba等工具在Python中调用特点:最底层,性能最优开发复杂度高需要熟悉CUDA编程模型示例库:PyCUDANumbaCUDA2.通用GPU计算框架2.1CUDA加速库方式:使
- flash attention的CUDA编程流水并行加速-V6
谨慎付费(看不懂试读博客不要订阅)
高性能计算redis数据库缓存
之前关于flashattention的介绍可以继续参考链接添加链接描述矩阵乘法的优化参考添加链接描述,我们发现矩阵乘法的最优配置为:BLOCK_DIM_x=BLOCK_DIM_y=16,同时每个线程处理一个8×8的子矩阵。线程网格设置如下所示:constintRq=8;constintRv
- 被 CUDA 性能问题困扰?从全局内存到共享内存,并行归约优化全解析!
讳疾忌医丶
动手学习CUDA编程c++CUDA开发语言
你是不是也觉得GPU编程听起来很酷,但一上手就头大?别慌,今天我带你玩转CUDA里一个既基础又硬核的东西——并行归约。啥是归约?简单说,就是把一堆数加起来(或者其他累积操作),但在GPU上,这可不是简单的for循环,而是能让性能起飞的优化手法。作为一个写了好几年CUDA的老司机,我有个独家观点:并行归约是CUDA编程的灵魂,搞懂它,你就摸到了GPU优化的门道。这篇文章不整虚的,我会用大白话带你从最
- 《GPU高性能编程CUDA实战》中文版电子书
翁佳忱
《GPU高性能编程CUDA实战》中文版电子书【下载地址】GPU高性能编程CUDA实战中文版电子书探索GPU高性能编程的奥秘,掌握CUDA实战技巧!本资源提供了《GPU高性能编程CUDA实战》中文电子书,深入解析GPU编程基础与CUDA架构,助您从理论到实践全面提升。无论您是编程新手还是资深开发者,本书都能为您提供清晰的指导与丰富的实战案例。立即下载,开启您的CUDA编程之旅,解锁GPU计算的无限潜
- Cuda Instruction Replay
ZhiqianXia
CUDA技术笔记cuda
在CUDA编程中,指令重放(InstructionReplay)是GPU执行指令时因特定原因导致指令需重复发射或重新执行的现象,通常会影响性能。以下是其关键点:指令重放的原因分支分歧(DivergentBranches)当同一线程束(Warp)中的线程执行不同分支(如if-else)时,GPU需串行化处理每个分支路径。同一指令可能被多次发射(重放),导致执行时间增加。内存访问延迟全局内存访问未命中
- CUDA编程高阶优化:如何突破GPU内存带宽瓶颈的6种实战策略
学术猿之吻
GPU高校人工智能边缘计算人工智能transformer深度学习gpu算力aiAI编程
在GPU计算领域,内存带宽瓶颈是制约性能提升的"隐形杀手"。本文面向具备CUDA基础的研究者,从寄存器、共享内存到TensorCore,系统剖析6项突破性优化策略,助你充分释放GPU算力。一、全局内存访问优化:对齐与合并原则1.1合并访问的本质GPU全局内存以线程束(Warp)为单位执行合并事务。当32个线程访问连续且对齐的128字节内存块时,总线利用率可达100%。以下代码演示如何实现合并
- CUDA编程优化:如何实现矩阵计算的100倍加速
学术猿之吻
GPU高校人工智能矩阵人工智能线性代数深度学习量子计算算法gpu算力
一、突破性能瓶颈的核心路径矩阵计算的百倍加速需要打通"内存带宽→计算密度→指令吞吐"三重关卡。根据NVIDIAAmpere架构白皮书,A100GPU的理论计算峰值(FP32)为19.5TFLOPS,但原生CUDA代码往往只能达到5-8%的理论值。通过系统化优化策略,我们成功将1024×1024矩阵乘法从初始的212ms优化至2.1ms,实现101倍加速(测试平台:NVIDIARTX3090)。二、
- C++开发者的逆袭之路:大部份的高薪岗位都在招 CUDA 人才,你还不行动?
讳疾忌医丶
动手学习CUDA编程c++开发语言
为什么你必须学会CUDA编程?想象一下,你手头有个计算任务,普通CPU跑得慢得像乌龟爬,而GPU却能像火箭一样把性能拉满——这就是高性能计算(HPC)的魅力!在这个数据爆炸的时代,无论是AI训练、科学仿真还是金融建模,HPC都成了不可或缺的利器。而NVIDIA的CUDA平台,正是这场革命的核心,把GPU从画图的“小能手”变成了并行计算的“大杀器”。作为一名C++专家,我可以负责任地说:学会CUDA
- CUDA 编程相关的开源库
byxdaz
CUDAcuda
CUDA编程相关的开源库非常丰富,涵盖了高性能计算、深度学习、图像处理、线性代数、优化算法等多个领域。1.通用GPU计算库CUDAToolkit(NVIDIA官方):包含CUDA运行时库、编译器(nvcc)、调试工具(cuda-gdb、Nsight)、数学库(如cuBLAS、cuFFT)等。CUDAToolkit-FreeToolsandTraining|NVIDIADeveloperThrust
- GPU编程实战指南04:CUDA编程示例,使用共享内存优化性能
anda0109
CUDA并行编程gpu算力AI编程ai
在CUDA编程中,共享内存(SharedMemory)比全局内存(GlobalMemory)效率高的原因主要与CUDA的硬件架构和内存访问特性密切相关。以下是详细分析:1.CUDA内存层次结构CUDA设备(GPU)具有多层次的内存架构,主要包括以下几种:寄存器(Registers):每个线程私有的高速存储单元,速度最快但容量有限。共享内存(SharedMemory):由同一个线程块(Block)中
- gather算子的CUDA编程和算子测试
谨慎付费(看不懂试读博客不要订阅)
高性能计算CUDA
知乎介绍参考添加链接描述完整测试框架参考本人仓库添加链接描述gather算子的onnx定义参考添加链接描述,该算子的主要变换参考下图:这里我们不妨以input=[A,dimsize,D],indices=[B,C],axis=1举例子,此时对应的output形状是[A,B,C,D],并且根据gather算子定义,我们知道output[i,j,k,s]=input[i,indices[j,k],s]
- Python调用CUDA
源代码分析
python开发语言
CUDA常用语法和函数CUDA(ComputeUnifiedDeviceArchitecture)是NVIDIA提供的一个并行计算平台和编程模型,允许开发者使用NVIDIAGPU进行高性能计算。以下是一些CUDA编程中的常用语法和函数:核函数(KernelFunctions):使用__global__修饰符定义,这种函数可以从主机(CPU)调用并在设备(GPU)上并行执行。调用格式:kernel>
- NVIDIA GTC 开发者社区Watch Party资料汇总
扫地的小何尚
NVIDIAGPUlinuxAI算法
NVIDIAGTC开发者社区WatchParty资料汇总以下是所有涉及到的工具中文解读汇总,希望可以帮到各位:1.CUDA编程模型开发者指南和最新功能解析专栏2.NVIDIAWarp:高性能GPU模拟与图形计算的Python框架3.NVIDIAcuDF:GPU加速的数据处理库详解4.NVIDIAcuML:GPU加速的机器学习库详解5.NVIDIAcuFFT详解:从入门到高级应用6.NVIDIAcu
- GPU计算的历史与CUDA编程入门
己见明
GPU计算CUDAC数据并行性CUDA程序结构向量加法内核
GPU计算的历史与CUDA编程入门背景简介GPU计算的历史可以追溯到早期的并行计算研究,如今已发展成为计算机科学中的一个重要分支。本文将探讨GPU计算的发展史,重点分析《ComputerGraphics:PrinciplesandPractice》等关键文献,以及CUDAC编程模型的引入及其对现代软件开发的影响。历史回顾回顾历史,GPU计算的发展始于1986年Hillis与Steele在《Comm
- CUDA编程基础
清 澜
算法面试人工智能c++算法nvidiacuda编程
一、快速理解CUDA编程1.1CUDA简介CUDA(ComputeUnifiedDeviceArchitecture)是由NVIDIA推出的并行计算平台和应用程序接口模型。它允许开发者利用NVIDIAGPU的强大计算能力来加速通用计算任务,而不仅仅是图形渲染。通过CUDA,开发者可以编写C、C++或Fortran代码,并将其扩展以在GPU上运行,从而显著提高性能,特别是在处理大规模数据集和复杂算法
- c++高性能多进程 cuda编程: safe_softmax实现 + cub::BlockReduce自定义归约操作
FakeOccupational
深度学习c++开发语言
目录cub::BlockReduce自定义归约操作(`cub::BlockReduce::Reduce`)1.语法safe_softmax实现cub::BlockReducecub::BlockReduce是CUB库(CUDAUnBound)提供的一种用于GPU线程块内数据归约(一般完成所有数据规约需要两次规约)的高效工具。它允许线程块内的多个线程并行地对数据执行归约操作,cub::BlockRe
- 英伟达的ptx是什么?ptx在接近汇编语言的层级运行?
AI-AIGC-7744423
人工智能
PTX(ParallelThreadeXecution)是英伟达CUDA架构中的一种中间表示形式(IR)语言。以下是关于它的介绍以及它与汇编语言层级关系的说明:PTX介绍•性质与作用:PTX是一种类似于汇编语言的指令集架构,但它更像是一种抽象的、面向并行计算的中间语言。它是CUDA编程模型中,主机代码与实际在GPU上执行的机器码之间的桥梁。开发者编写的CUDAC/C++等高级语言代码,在编译过程中
- CUDA编程之OpenCV与CUDA结合使用
byxdaz
CUDAopencv人工智能计算机视觉
OpenCV与CUDA的结合使用可显著提升图像处理性能。一、版本匹配与环境配置CUDA与OpenCV版本兼容性OpenCV各版本对CUDA的支持存在差异,例如OpenCV4.5.4需搭配CUDA10.02,而较新的OpenCV4.8.0需使用更高版本CUDA。需注意部分模块(如级联检测器)可能因CUDA版本更新而不再支持。OpenCV版本CUDA版本4.5.x推荐CUDA11.x及以下
- GPU编程实战指南01:CUDA编程极简手册
anda0109
CUDA并行编程算法
目录1.CUDA基础概念1.1线程层次结构1.2内存层次结构2.CUDA编程核心要素2.1核函数2.2内存管理2.3同步机制3.CUDA优化技巧3.1内存访问优化3.2共享内存使用3.3线程分配优化4.常见问题和解决方案5.实际案例分析1.CUDA基础概念1.1线程层次结构CUDA采用层次化的线程组织结构,从小到大依次为:线程(Thread):最基本的执行单元每个线程执行相同的核函数代码通过thr
- 高性能计算中如何优化内存管理?
gpu
在高性能计算(HPC)中,优化内存管理是提升计算性能的关键环节之一。以下是一些常见的优化策略和方法:内存分配与管理策略内存池技术:通过预分配一定大小的内存池,避免频繁的内存分配和释放操作,减少内存碎片化。例如,在CUDA编程中,可以使用内存池来管理GPU内存,从而提高内存访问效率。异构内存管理:在异构计算环境中(如CPU+GPU),采用统一内存管理(UnifiedMemory)或智能数据迁移策略,
- cuda编程入门——并行归约(五)
我不会打代码啊啊
cuda编程算法c++gpu算力
CUDA编程入门—并行归约(数组求和为例)在并行计算中,归约(Reduction)是一种将多个数据通过特定操作(如求和、求最大值等)合并为单一结果的并行算法。其核心目标是通过并行化加速大规模数据集的聚合计算。关键概念操作类型:可结合且可交换的操作(如加法、乘法、最大值、最小值、逻辑与/或等)适合并行归约。若操作不可结合(如减法或除法),需特殊处理或无法直接并行化。并行实现方式:树形结构归约:将数据
- cuda编程入门——并行性与异构性概念
我不会打代码啊啊
cuda编程gpu算力c++
CUDA编程入门一基于cuda的异构并行计算并行性一、并行性的概念与分类概念并行性旨在通过同时处理多个任务或数据元素来提高计算速度和效率。它可以在不同的层次上实现,包括指令级并行、数据级并行和任务级并行等。分类指令级并行(Instruction-LevelParallelism,ILP):在处理器的指令执行层面,通过硬件技术(如流水线、超标量技术等)让多条指令在不同阶段同时执行,从而提高处理器的指
- jquery实现的jsonp掉java后台
知了ing
javajsonpjquery
什么是JSONP?
先说说JSONP是怎么产生的:
其实网上关于JSONP的讲解有很多,但却千篇一律,而且云里雾里,对于很多刚接触的人来讲理解起来有些困难,小可不才,试着用自己的方式来阐释一下这个问题,看看是否有帮助。
1、一个众所周知的问题,Ajax直接请求普通文件存在跨域无权限访问的问题,甭管你是静态页面、动态网页、web服务、WCF,只要是跨域请求,一律不准;
2、
- Struts2学习笔记
caoyong
struts2
SSH : Spring + Struts2 + Hibernate
三层架构(表示层,业务逻辑层,数据访问层) MVC模式 (Model View Controller)
分层原则:单向依赖,接口耦合
1、Struts2 = Struts + Webwork
2、搭建struts2开发环境
a>、到www.apac
- SpringMVC学习之后台往前台传值方法
满城风雨近重阳
springMVC
springMVC控制器往前台传值的方法有以下几种:
1.ModelAndView
通过往ModelAndView中存放viewName:目标地址和attribute参数来实现传参:
ModelAndView mv=new ModelAndView();
mv.setViewName="success
- WebService存在的必要性?
一炮送你回车库
webservice
做Java的经常在选择Webservice框架上徘徊很久,Axis Xfire Axis2 CXF ,他们只有一个功能,发布HTTP服务然后用XML做数据传输。
是的,他们就做了两个功能,发布一个http服务让客户端或者浏览器连接,接收xml参数并发送xml结果。
当在不同的平台间传输数据时,就需要一个都能解析的数据格式。
但是为什么要使用xml呢?不能使json或者其他通用数据
- js年份下拉框
3213213333332132
java web ee
<div id="divValue">test...</div>测试
//年份
<select id="year"></select>
<script type="text/javascript">
window.onload =
- 简单链式调用的实现技术
归来朝歌
方法调用链式反应编程思想
在编程中,我们可以经常遇到这样一种场景:一个实例不断调用它自身的方法,像一条链条一样进行调用
这样的调用你可能在Ajax中,在页面中添加标签:
$("<p>").append($("<span>").text(list[i].name)).appendTo("#result");
也可能在HQ
- JAVA调用.net 发布的webservice 接口
darkranger
webservice
/**
* @Title: callInvoke
* @Description: TODO(调用接口公共方法)
* @param @param url 地址
* @param @param method 方法
* @param @param pama 参数
* @param @return
* @param @throws BusinessException
- Javascript模糊查找 | 第一章 循环不能不重视。
aijuans
Way
最近受我的朋友委托用js+HTML做一个像手册一样的程序,里面要有可展开的大纲,模糊查找等功能。我这个人说实在的懒,本来是不愿意的,但想起了父亲以前教我要给朋友搞好关系,再加上这也可以巩固自己的js技术,于是就开始开发这个程序,没想到却出了点小问题,我做的查找只能绝对查找。具体的js代码如下:
function search(){
var arr=new Array("my
- 狼和羊,该怎么抉择
atongyeye
工作
狼和羊,该怎么抉择
在做一个链家的小项目,只有我和另外一个同事两个人负责,各负责一部分接口,我的接口写完,并全部测联调试通过。所以工作就剩下一下细枝末节的,工作就轻松很多。每天会帮另一个同事测试一些功能点,协助他完成一些业务型不强的工作。
今天早上到公司没多久,领导就在QQ上给我发信息,让我多协助同事测试,让我积极主动些,有点责任心等等,我听了这话,心里面立马凉半截,首先一个领导轻易说
- 读取android系统的联系人拨号
百合不是茶
androidsqlite数据库内容提供者系统服务的使用
联系人的姓名和号码是保存在不同的表中,不要一下子把号码查询来,我开始就是把姓名和电话同时查询出来的,导致系统非常的慢
关键代码:
1, 使用javabean操作存储读取到的数据
package com.example.bean;
/**
*
* @author Admini
- ORACLE自定义异常
bijian1013
数据库自定义异常
实例:
CREATE OR REPLACE PROCEDURE test_Exception
(
ParameterA IN varchar2,
ParameterB IN varchar2,
ErrorCode OUT varchar2 --返回值,错误编码
)
AS
/*以下是一些变量的定义*/
V1 NUMBER;
V2 nvarc
- 查看端号使用情况
征客丶
windows
一、查看端口
在windows命令行窗口下执行:
>netstat -aon|findstr "8080"
显示结果:
TCP 127.0.0.1:80 0.0.0.0:0 &
- 【Spark二十】运行Spark Streaming的NetworkWordCount实例
bit1129
wordcount
Spark Streaming简介
NetworkWordCount代码
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
- Struts2 与 SpringMVC的比较
BlueSkator
struts2spring mvc
1. 机制:spring mvc的入口是servlet,而struts2是filter,这样就导致了二者的机制不同。 2. 性能:spring会稍微比struts快。spring mvc是基于方法的设计,而sturts是基于类,每次发一次请求都会实例一个action,每个action都会被注入属性,而spring基于方法,粒度更细,但要小心把握像在servlet控制数据一样。spring
- Hibernate在更新时,是可以不用session的update方法的(转帖)
BreakingBad
Hibernateupdate
地址:http://blog.csdn.net/plpblue/article/details/9304459
public void synDevNameWithItil()
{Session session = null;Transaction tr = null;try{session = HibernateUtil.getSession();tr = session.beginTran
- 读《研磨设计模式》-代码笔记-观察者模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
import java.util.Observable;
import java.util.Observer;
/**
* “观
- 重置MySQL密码
chenhbc
mysql重置密码忘记密码
如果你也像我这么健忘,把MySQL的密码搞忘记了,经过下面几个步骤就可以重置了(以Windows为例,Linux/Unix类似):
1、关闭MySQL服务
2、打开CMD,进入MySQL安装目录的bin目录下,以跳过权限检查的方式启动MySQL
mysqld --skip-grant-tables
3、新开一个CMD窗口,进入MySQL
mysql -uroot
 
- 再谈系统论,控制论和信息论
comsci
设计模式生物能源企业应用领域模型
再谈系统论,控制论和信息论
偶然看
- oracle moving window size与 AWR retention period关系
daizj
oracle
转自: http://tomszrp.itpub.net/post/11835/494147
晚上在做11gR1的一个awrrpt报告时,顺便想调整一下AWR snapshot的保留时间,结果遇到了ORA-13541这样的错误.下面是这个问题的发生和解决过程.
SQL> select * from v$version;
BANNER
-------------------
- Python版B树
dieslrae
python
话说以前的树都用java写的,最近发现python有点生疏了,于是用python写了个B树实现,B树在索引领域用得还是蛮多了,如果没记错mysql的默认索引好像就是B树...
首先是数据实体对象,很简单,只存放key,value
class Entity(object):
'''数据实体'''
def __init__(self,key,value)
- C语言冒泡排序
dcj3sjt126com
算法
代码示例:
# include <stdio.h>
//冒泡排序
void sort(int * a, int len)
{
int i, j, t;
for (i=0; i<len-1; i++)
{
for (j=0; j<len-1-i; j++)
{
if (a[j] > a[j+1]) // >表示升序
- 自定义导航栏样式
dcj3sjt126com
自定义
-(void)setupAppAppearance
{
[[UILabel appearance] setFont:[UIFont fontWithName:@"FZLTHK—GBK1-0" size:20]];
[UIButton appearance].titleLabel.font =[UIFont fontWithName:@"FZLTH
- 11.性能优化-优化-JVM参数总结
frank1234
jvm参数性能优化
1.堆
-Xms --初始堆大小
-Xmx --最大堆大小
-Xmn --新生代大小
-Xss --线程栈大小
-XX:PermSize --永久代初始大小
-XX:MaxPermSize --永久代最大值
-XX:SurvivorRatio --新生代和suvivor比例,默认为8
-XX:TargetSurvivorRatio --survivor可使用
- nginx日志分割 for linux
HarborChung
nginxlinux脚本
nginx日志分割 for linux 默认情况下,nginx是不分割访问日志的,久而久之,网站的日志文件将会越来越大,占用空间不说,如果有问题要查看网站的日志的话,庞大的文件也将很难打开,于是便有了下面的脚本 使用方法,先将以下脚本保存为 cutlog.sh,放在/root 目录下,然后给予此脚本执行的权限
复制代码代码如下:
chmo
- Spring4新特性——泛型限定式依赖注入
jinnianshilongnian
springspring4泛型式依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- centOS安装GCC和G++
liuxihope
centosgcc
Centos支持yum安装,安装软件一般格式为yum install .......,注意安装时要先成为root用户。
按照这个思路,我想安装过程如下:
安装gcc:yum install gcc
安装g++: yum install g++
实际操作过程发现,只能有gcc安装成功,而g++安装失败,提示g++ command not found。上网查了一下,正确安装应该
- 第13章 Ajax进阶(上)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- How to determine BusinessObjects service pack and fix pack
blueoxygen
BO
http://bukhantsov.org/2011/08/how-to-determine-businessobjects-service-pack-and-fix-pack/
The table below is helpful. Reference
BOE XI 3.x
12.0.0.
y BOE XI 3.0 12.0.
x.
y BO
- Oracle里的自增字段设置
tomcat_oracle
oracle
大家都知道吧,这很坑,尤其是用惯了mysql里的自增字段设置,结果oracle里面没有的。oh,no 我用的是12c版本的,它有一个新特性,可以这样设置自增序列,在创建表是,把id设置为自增序列
create table t
(
id number generated by default as identity (start with 1 increment b
- Spring Security(01)——初体验
yang_winnie
springSecurity
Spring Security(01)——初体验
博客分类: spring Security
Spring Security入门安全认证
首先我们为Spring Security专门建立一个Spring的配置文件,该文件就专门用来作为Spring Security的配置