- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- 研讨会预告:基于 NVIDIA Omniverse 构建 Physical AI 应用,解锁 Physical AI 的落地路径
CSDN资讯
人工智能
在生成式AI持续革新虚拟内容生产的同时,一种面向现实世界的AI正悄然兴起——物理AI(PhysicalAI)。它赋能机器人、自动驾驶等自主系统在三维空间中完成感知、理解与互动,让AI走出屏幕,触碰现实。借助NVIDIAOmniverse、Cosmos、IsaacSim等平台,开发者正在加速构建真实可用的物理智能体。加入本期精讲堂,探索如何利用端到端工具链快速推进AI与物理世界的深度融合。基于NVI
- vLLM专题(三)-快速开始
AI专题精讲
大模型专题系列人工智能
本指南将帮助您快速开始使用vLLM执行:离线批量推理使用OpenAI兼容服务器进行在线服务1.先决条件操作系统:LinuxPython:3.9–3.122.安装如果您使用的是NVIDIAGPU,您可以直接使用pip安装vLLM。建议使用uv,一个非常快速的Python环境管理器,来创建和管理Python环境。请按照文档安装uv。安装uv后,您可以创建一个新的Python环境,并使用以下命令安装vL
- 【MMCV】MMCV安装与踩坑
Elendill
Pyhtonpytorchpythonmmcv
确认MMCV版本首先确认项目所需MMCV的版本是多少mmcv2.0版本的代码相比较于=2.0.0安装方法新创建一个conda环境安装pytorch:condainstallpytorchtorchvisiontorchaudiopytorch-cuda=11.8-cpytorch-cnvidia安装mim,这是openmm官方推出的用于安装他们旗下mm系列产品的安装器:pipinstall-Uop
- PHP 8.0 云原生与前沿技术深度整合(1)
jishujiaoliu1682
php开发语言
PHP8.0云原生与前沿技术深度整合目录云原生PHP架构ServerlessPHP实践AI/ML集成方案区块链与PHP物联网(IoT)开发边缘计算部署未来技术展望云原生PHP架构KubernetesOperator设计phpclassPhpAppOperator{private$k8sClient;publicfunction__construct(K8sClient$client){$this-
- 存算一体架构或成为AI处理器技术发展关键
神州问学
人工智能架构gpu算力算法语言模型
©作者|坚果来源|神州问学引言马斯克巨资60亿美元打造的“超级算力工场”,通过串联10万块顶级NVIDIAH100GPU,不仅震撼了AI和半导体行业,促使英伟达股价应声上涨6%,还强烈暗示了AI大模型及芯片需求的急剧膨胀。这一行动不仅是马斯克对AI未来的大胆押注,也成为了全球企业加速布局AI芯片领域的催化剂,预示着一场科技革新竞赛的全面升级,各方竞相提升算力,争夺AI时代的战略高地。观察近期Bla
- 基于Jetson Nano与PyTorch的无人机实时目标跟踪系统搭建指南
引言:边缘计算赋能智能监控在AIoT时代,将深度学习模型部署到嵌入式设备已成为行业刚需。本文将手把手指导读者在NVIDIAJetsonNano(4GB版本)开发板上,构建基于YOLOv5+SORT算法的实时目标跟踪系统,集成无人机控制与地面站监控界面,最终打造低功耗智能监控设备。通过本项目,读者将掌握:嵌入式端模型优化与部署技巧;多目标跟踪算法工程化实现;无人机-地面站协同控制架构;边缘计算场景下
- LLM微调训练指南
小小怪 @
人工智能自然语言处理
模型选择策略开源LLM的选择需综合评估任务需求与资源限制:LLaMA-2(7B/13B/70B):商用友好,推荐使用HuggingFace格式的社区变体(如NousResearch版本)Mistral(7B):Apache2.0许可,在推理和数学任务表现突出Falcon(7B/40B):商业授权宽松,特别适合多轮对话场景硬件匹配参考:NVIDIA3090可微调7B模型(QLoRA),A100建议尝
- 深度学习GPU工作站主机选择指南:以RTX 5090为核心的2025年配置策略
前言2025年,随着NVIDIARTX5090的发布,深度学习硬件领域迎来了革命性的变化。这款基于Blackwell架构的旗舰GPU不仅在游戏领域表现卓越,更在AI和深度学习应用中展现出前所未有的性能实力。对于深度学习研究者和工程师而言,RTX5090的出现重新定义了工作站配置的标准,其32GBGDDR7显存、768个第五代TensorCore以及大幅提升的计算性能,为大规模模型训练和推理提供了全
- 主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
金井PRATHAMA
脑神经科学与NLP自然语言处理人工智能神经网络
时空联合细胞(SpatiotemporalConjunctiveCells)主要分布在背侧海马体CA1区(dCA1),其核心功能是同步编码空间位置、时间信息和行为意图,形成动态的情景记忆表征。这种神经机制为自然语言处理(NLP)中的深层语义分析提供了突破性的启示,尤其在解决语义连贯性、上下文建模和长期依赖等核心挑战上。以下是具体影响和技术实现路径:一、时空联合细胞的核心机制及其NLP关联背侧海马体
- 解决HPC环境下Python的持续性ModuleNotFoundError-No module named ‘taming‘
yang_li_wen
python开发语言
一、问题描述我们的目标是在一个HPC集群的计算节点上,通过提交作业脚本来执行一个依赖于taming-transformers库的Python程序。该程序的运行环境由Conda进行管理,且环境与项目代码均部署在所有节点均可访问的共享文件系统(/project和/scratch)上。尽管我们确认依赖包已在环境中安装,但在计算节点上执行脚本时,程序在尝试导入taming模块时(fromtaming.mo
- 三星数据被黑客泄露、罗马尼亚加油站网络遭勒索攻击|3月8日全球网络安全热点
腾讯安全
网络安全
安全资讯报告攻击英伟达的黑客泄露了三星数据据报道,攻击并泄露Nvidia的黑客组织LAPSUS$发布了它所描述的“三星机密源代码”。该黑客组织此前曾从Nvidia窃取机密信息。BleepingComputer报告称,LAPSUS$泄露了近190GB的数据,据称其中包括TrustZone环境使用的受信任小程序的源代码、最近三星设备的引导加载程序以及与三星帐户相关的技术等。LAPSUS$声称也泄露了“
- 光影双生:实时与离线渲染的共生竞合图景
渲吧-云渲染
3d
曾经,渲染是场漫长等待的幕后魔法,耗时数小时甚至数日方能呈现一帧精妙画面。如今,实时渲染以其“即时可见”的魅力正重塑视觉创作格局。然而,这并非一场简单的替代,实时渲染与离线渲染正走向深度共生与博弈的平衡。实时渲染:速度与交互的跃升技术洪流正强力驱动实时渲染的进化。GPU算力的指数级增长,从固定管线到高度可编程渲染管线的革命性跨越,为实时图形解锁了前所未有的自由度。NVIDIAOptiX等光线追踪引
- 主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时间细胞对NLP中的深层语义分析的积极影响和启示
金井PRATHAMA
脑神经科学与NLP神经网络自然语言处理人工智能知识图谱
时间细胞(timecells)作为海马体CA1区域中编码时间信息的神经元,其工作机制对自然语言处理(NLP)中的深层语义分析具有多方面的启示。这些神经元通过整合时空信息、动态竞争机制和序列编码能力,为解决NLP中语义连贯性、上下文依赖性和长期依赖等挑战提供了生物神经基础。以下是具体的影响和启示:一、时间细胞的特性与深层语义分析的挑战关联时间编码的动态性与语义上下文依赖时间细胞通过速率编码(firi
- WSL2部署训练YOLOv11之环境配置(2025年4月19日)
鱼圆食不食
YOLO
一、前言今天尝试在WSL2环境中部署训练YOLOv11,顺便把环境配置好。二、安装CUDA由于WSL2中并不能直接使用宿主机的显卡,所以需要安装CUDAonWSL以安装NVIDIA驱动到WSL中。注意必须是WSL2,WSL2对GPU的支持使这些应用程序能够受益于GPU加速计算,WSL1不支持。打开cmd或pwsh更新一下WSL内核:wsl.exe--update确保宿主机已安装最新的NVIDIAG
- Python成第四个支持CUDA的编程语言
Python成第四个支持CUDA的编程语言3月19日NVIDIA的GTC2013图形技术大会将开幕,在此之前会有很多宣传造势内容,其中最重大也是最主要的就是NVIDIA老总黄仁勋的开幕词了,其他合作伙伴也会发布各自的演讲。ContinuumAnalytics联合NVIDIA宣布将会引入新的PythonCUDA编译器——NumbaPro,Python也成为继C、C++以及Fortan之后的第四个支持
- 从 0 到 1 搞定nvidia 独显推流:硬件视频编码环境安装完整学习笔记
lxmyzzs
图像算法之音视频编解码音视频学习笔记
笔记用于安装和配置一套完整的媒体处理工具链,包括NVIDIA编码头文件、带CUDA加速的FFmpeg以及ZLMediaKit流媒体服务框架,适用于需要进行视频编解码、流媒体推流/拉流等场景的开发与部署。标题核心组件及版本说明nv-codec-headers来源:Gitee仓库jario-jin/nv-codec-headers版本:n11.1.5.0(对应NVIDIAVideoCodecSDK接口
- AI周报:技术面试卷出新高度,Agent落地开启“工具觉醒”时代
哪小吒圈子
人工智能语言模型
一句话暴论:当面试官要求手搓FP16精度时,真正的考题是“你能否在硅基文明觉醒前跟上进化速度”。一、面试地狱难度实录(开发者生存指南)百度二面手搓FP16精度:考的不是浮点数,而是对硬件底层的敬畏(原文)腾讯夺命11连问:混元大模型面试暴露行业真相——懂原理已不够,得会调参、训推、修故障的“全栈炼丹师”(解析)NVIDIA四轮拷打实录:GPU厂面试竟考Attention优化!LightingAtt
- 精通 triton 使用 MLIR 的源码逻辑 - 第001节:triton 的应用简介
项目使用到MLIR,通过了解triton对MLIR的使用,体会到MLIR在较大项目中的使用方式,汇总一下。1.Triton概述OpenAITriton是一个开源的编程语言和编译器,旨在简化GPU高性能计算(HPC)的开发,特别是针对深度学习、科学计算等需要高效并行计算的领域。既允许开发者编写高度优化的代码,又不必过度关注底层硬件细节。这样,通过简化高性能计算,可以加速新算法的实现和实验。传统GPU
- 深度学习-常用环境配置
瑶山
AIlinux人工智能windowsCUDAPyTorch
目录Miniconda安装安装NVIDIA显卡驱动安装CUDA和cnDNNCUDAcuDNNPyTorch安装手动下载测试Miniconda安装最新版Miniconda搭建Python环境_miniconda创建python虚拟环境-CSDN博客安装NVIDIA显卡驱动直接进NVIDIA官网:NVIDIAGeForce驱动程序-N卡驱动|NVIDIA在这里有GeForce驱动程序,立即下载,这是下
- 深度学习分布式训练:并行策略与通信机制的系统性分析
Takoony
深度学习分布式人工智能
1.引言随着深度学习模型规模的指数级增长,单一计算设备已无法满足训练需求。以GPT-3为例,其1750亿参数在FP16精度下需要约350GB存储空间(每个参数2字节),远超当前主流GPU的显存容量(如NVIDIAA100的80GB)。根据OpenAI的技术报告[1],即使使用最先进的硬件,单卡训练GPT-3需要355年。这一计算瓶颈催生了分布式训练技术的快速发展。本文将从理论基础出发,系统性地分析
- 大模型部署的整体架构
flyair_China
人工智能云计算架构
一、大模型部署架构1.1部署架构大模型部署的整体架构是一个多层次、软硬件协同的系统工程,旨在解决模型规模庞大、计算资源密集、延迟敏感等挑战。1.1.1、基础架构层:硬件资源与网络算力集群GPU/NPU阵列:如NVIDIAA100/H100/H200/H800、华为昇腾、昆仑芯等,支持FP16/INT8量化计算,显存带宽需达TB级(如HBM3e显存带宽达3.35TB/s)。异构计算:CPU+GPU/
- Kimi-Audio:最佳音LLM, 如何免费使用 Kimi-Audio AI 模型?
知识大胖
NVIDIAGPU和大语言模型开发教程人工智能kimi
简介继DeepSeek之后,字节跳动(现名MoonShotAI,又名Kimi)也在生成式人工智能领域加速发展,并发布了自己的音频模型Kimi-Audio,据说是迄今为止最好的音频模型。推荐文章《NvidiaGPU入门教程之02ubuntu安装A100显卡驱动(含8步快速浓缩教程)》权重2,安装A100显卡驱动《本地大模型知识库OpenWebUI系列之如何解决知识库上传文件故障Extractedco
- apex 0x800001错误
行云浪迹
游戏程序
apex0x800001错误在最近的apex更新后,后面会出现如下的错误,该错误是说游戏文件损坏或缺失可能导致此错误,于是就在Steam中的游戏的属性里进行了完整性的检验,以及重新下载游戏,但还是无法解决该问题。解决办法我是通过更新显卡驱动才得以解决。大家根据电脑不同的显卡配置去官网更新,以下是各个显卡。NVIDIA:通过GeForceExperience更新。AMD:使用AMDRadeonSof
- 英特尔CEO坦承AI领域落后Nvidia,边缘计算成复苏关键
weishi122
人工智能边缘计算AI技术芯片graphql金融科技
据报道,英特尔CEO已向全球员工发表讲话Lip-BuTan似乎提出了坦率的观察和清晰目标所有这些表明英特尔将聚焦于精简业务,并进军AI领域——尽管不是直接追赶Nvidia,而是通过所谓边缘AI英特尔(相对)新任CEO显然承认了公司面临的严峻挑战,但Lip-BuTan似乎制定了复苏计划——而且听起来相当务实。《俄勒冈人报》报道了一段Tan的问答环节录音(由Tom’sHardware发现),该录音据称
- pytorch的学习笔记
wyn20001128
算法
一cuda 2006年,NVIDIA公司发布了CUDA(ComputeUnifiedDeviceArchitecture),是一种新的操作GPU计算的硬件和软件架构,是建立在NVIDIA的GPUs上的一个通用并行计算平台和编程模型,它提供了GPU编程的简易接口,基于CUDA编程可以构建基于GPU计算的应用程序。 CPU是用于负责逻辑性比较强的计算,GPU专注于执行高度线程化的并行处理任务。所以
- 元宇宙与Web3的深度融合:构建沉浸式数字体验的愿景与挑战
一、技术特征与融合基础1.元宇宙的技术架构(2025年)空间构建技术:3D建模与渲染:实时渲染引擎(如UnityHDRP)支持路径追踪光追,AI生成模型(NVIDIAGet3D)3秒生成3D场景。数字孪生:城市级建模(腾讯覆盖100+城市)、工业级精度(西门子Xcelerator达0.1mm),动态映射现实数据(如NASA火星车实时驱动虚拟环境)。交互技术:自然交互界面:手势识别(UltraLea
- 常用显卡命令
Mr.小海
Linuxlinux机器学习人工智能深度学习服务器
常用显卡命令1.查看显卡基本信息lspci|grep-invidia2.查看显卡驱动版本不更新:nvidia-smi-a每秒更新:watch-n1nvidia-smi3.查看gpu使用情况nvidia-smi4.动态查看gpu使用情况watch-n1nvidia-smi5.查看谁正在使用GPUpsaux|grep30856.打开系统监视器,快捷键:winctrl+alt+del:gnome-sys
- Docker 与 GPU 训练
wydxry
docker容器运维
以下是Docker与GPU训练相关的核心命令和操作指南,涵盖容器启动、资源监控和调试技巧:1.启用GPU支持的Docker安装NVIDIA容器工具包(必须步骤)#添加源并安装distribution=$(./etc/os-release;echo$ID$VERSION_ID)\&&curl-s-Lhttps://nvidia.github.io/nvidia-docker/gpgkey|sudoa
- rust最低什么显卡能游戏_腐蚀Rust配置要求汇总 腐蚀Rust游戏配置要求是什么_游侠网...
微尘-黄含驰
rust最低什么显卡能游戏
腐蚀Rust游戏配置要求是什么?体验版本发售了有四年之久,如今正式版终于有了新消息,将于2月8号发售正式版,今天给大家带来的是腐蚀Rust配置要求汇总,一起来看下吧。配置要求汇总Windows最低配置:Requiresa64-bitprocessorandoperatingsystem操作系统:Windows764bit处理器:2ghz内存:8GBRAM图形:NVIDIAGTX6702GB/AMD
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比