- 【深度学习-Day 36】CNN的开山鼻祖:从LeNet-5到AlexNet的架构演进之路
吴师兄大模型
深度学习入门到精通pythonpytorch开发语言人工智能CNN深度学习大模型
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 【论文阅读笔记】TimesURL: Self-supervised Contrastive Learning for Universal Time Series
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimesURL:Self-supervisedContrastiveLearningforUniversalTimeSeriesRepresentationLearning摘要 学习适用于多种下游任务的通用时间序列表示,并指出这在实际应用中具有挑战性但也是有价值的。最近,研究人员尝试借鉴自监督对比学习(SSCL)在计算机视觉(CV)和自然语言处理(NLP)中的成功经验,以解决时间序列表示的问题。
- Prompt相关论文阅读(02)--Auto-CoT(2024-11-25)
zhilanguifang
论文promptengineering论文阅读笔记
论文阅读笔记2024-11-24~2024-11-25Auto-CoT:AutomaticChainofThoughtPromptinginLargeLanguageModels(ICLR2023)碎碎念:复现代码和笔记保存到gitee仓库上海交通大学的学生在亚马逊实习的时候的成果ICLR2023摘要:LLM能够通过生成中间推理步骤执行复杂的推理。提供这些步骤用于提示演示叫做思维链提示CoT。Co
- 【AI】AI大模型发展史:从理论探索到技术爆发
不想当程序汪的第N天
AI人工智能
一、早期探索阶段—理论与技术奠基1.1符号主义与连接主义的博弈20世纪50-70年代,符号主义AI主导研究方向,通过专家系统模拟人类逻辑推理,但受限于计算能力和数据规模。80年代连接主义AI兴起,以神经网络为核心,反向传播算法的提出为深度学习奠定基础。1.2神经网络初步实践1980年:卷积神经网络(CNN)雏形诞生1998年:LeNet-5模型成功应用于手写数字识别,成为首个商用深度学习模型关键局
- CNN-GRU混合模型学习笔记
weixin_54372988
cnngru学习
GRU学习笔记CNN:卷积神经网络GRU(GateRecurrentUnit),门控循环单元CNN:卷积神经网络3个组成部分:1.卷积层——提取图像局部特征2.池化层——降维(防止过拟合)3.全连接层——输出结果一个卷积核扫完整张图片,得到每个小区域的特征值具体应用中通常有多个卷积核CNN可能有多层结构,如LeNet-5:卷积层–池化层–卷积层–池化层–卷积层–全连接层处理时间序列(1D序列):(
- 【论文阅读笔记】《CodeS: Towards Building Open-source Language Models for Text-to-SQL 》
柠石榴
text2sql论文论文阅读笔记语言模型
文章目录一、论文基本信息1.文章标题2.所属刊物/会议3.发表年份4.作者列表5.发表单位二、摘要三、解决问题四、创新点五、自己的见解和感想六、研究背景七、研究方法模型实验数据评估指标八、总结九、相关重要文献一、论文基本信息1.文章标题CodeS:TowardsBuildingOpen-sourceLanguageModelsforText-to-SQL2.所属刊物/会议未明确标注(会议缩写为“C
- 【论文阅读笔记】HaDes幻觉检测benchmark
zsq
论文分享论文阅读笔记NLP大语言模型幻觉
0论文信息题目:AToken-levelReference-freeHallucinationDetectionBenchmarkforFree-formTextGeneration作者:TianyuLiu,YizheZhang,ChrisBrockett,YiMao,ZhifangSui,WeizhuChen,BillDolan会议:ACL,2022链接:https://arxiv.org/ab
- 论文阅读笔记—— Multi-attentional Deepfake Detection
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录Multi-attentionalDeepfakeDetection背景创新贡献方法注意图正则化的区域独立性损失注意力引导的数据增强实验Multi-attentionalDeepfakeDetection来源:CVPR2021作者:HanqingZhao1WenboZhou1,†DongdongChen2TianyiWei1WeimingZhang1,†NenghaiYu1单位:Unive
- [论文阅读笔记] Learning Transferable Visual Models From Natural Language Supervision
Heartache Doctor
笔记论文阅读笔记
Abstract将LLM带来的语言zero-shot能力扩展到图像领域,让图像pretrain不再局限于由数据集定义的类别,从而大幅度提升在downstream任务zero-shot的精度。文章提供了从零预训练的CLIP模型,用以训练的大数据集,以及基于对比学习的对齐方案。IntroductionNLP领域下,使用大量数据pretrain>使用高质量标注数据集。→\rightarrow→CV是否也
- GLIDE论文阅读笔记与DDPM(Diffusion model)的原理推导
大写-凌祁
论文阅读笔记人工智能深度学习python机器学习计算机视觉
Abstract扩散模型(Diffusionmodel)最近被证明可以生成高质量的合成图像,尤其是当它们与某种引导技术结合使用时,可以在生成结果的多样性与保真度之间进行权衡。本文探讨了在文本条件图像生成任务中使用扩散模型,并比较了两种不同的引导策略:CLIP引导和无分类器引导。我们发现,人类评估者更倾向于使用无分类器引导方法,无论是在照片真实感还是与文本描述的匹配度方面,该方法通常都能生成具有高度
- 论文阅读笔记——FLOW MATCHING FOR GENERATIVE MODELING
寻丶幽风
Background论文阅读笔记流匹配扩散模型人工智能
FlowMatching论文扩散模型:根据中心极限定理,对原始图像不断加高斯噪声,最终将原始信号破坏为近似的标准正态分布。这其中每一步都构造为条件高斯分布,形成离散的马尔科夫链。再通过逐步去噪得到原始图像。Flowmatching采取直接将已知分布(如白噪声)转换为真实数据分布来生成数据,并且Flow是基于NormalizingFlow,故而是可微双射。生成过程中变化的概率密度构成一个集合,称为概
- 论文阅读笔记——Step1X-Edit: A Practical Framework for General Image Editing
寻丶幽风
论文阅读笔记论文阅读笔记理解生成模型多模态人工智能
Step1X-Edit论文当前图像编辑数据集规模小,质量差,由此构建了如下数据构造管线。高质量三元组数据(源图像、编辑指令、目标图像)。主体添加与移除:使用Florence-2对专有数据集标注,然后使用SAM2进行分割,再使用ObjectRemovalAlpha进行修复。编辑指令结合Step-1o和GPT-4o生成,然后人工审查有效性。主体替换与背景更改:使用Florence-2对专有数据集标注,
- 【深度学习】6. 卷积神经网络,CNN反向传播,感受野,池化变种,局部连接机制,可视化实例
pen-ai
深度学习机器学习深度学习cnn人工智能
卷积神经网络(ConvolutionalNeuralNetworks)一、卷积神经网络的历史发展Neocognitron(1980)由KunihikoFukushima提出,Neocognitron是最早模拟人类视觉皮层结构的人工神经网络架构。它具备层级结构与局部连接机制,可以实现位置不变性的图像识别,是现代CNN的雏形。LeNet-5(1998)YannLeCun等人提出了LeNet-5,这是第
- 论文阅读笔记——Nexus-Gen: A Unified Model for Image Understanding, Generation, and Editing
寻丶幽风
论文阅读笔记论文阅读笔记多模态理解生成自回归扩散模型
Nexus-Gen论文Nexus-Gen采用预测图像嵌入作为中间条件,链接自回归模型和扩散模型,通过预填充自回归避免嵌入误差传播,突破传统外界LLM因条件压缩导致信息丢失,提高理解生成模型在理解任务和生成任务上的性能表现。传统的图像生成任务往往局限于Text-to-Image场景,模型侧重于图像质量或局部内容填充。而Nexus-Gen的架构设计突破了这一范式,不仅具备高质量图像生成能力,还可以执行
- 论文阅读笔记——PixArt-α,PixArt-δ
寻丶幽风
论文阅读笔记论文阅读笔记T2I扩散模型文生图
PixArt-αPixArt-α论文仅使用28400美元,28M训练数据,训练时长为SD1.5的10.8%,只有0.6B参数量,达到接近商业应用的水准。现有数据集存在的缺陷:图文匹配偏差、描述信息不完整、词汇多样性不足(长尾效应显著)、低质量数据。为了实现低成本训练,华为采用了三阶段的训练策略:第一个阶段是学习像素依赖关系,简单来说是先学习生成真实的图像,这里是用ImageNet数据集训练一个基于
- 《XMK-CKKS: Extended Multiple Key Homomorphic Encryption over CKKS》 论文阅读笔记
stupidyccc
同态加密论文阅读笔记安全
《XMK-CKKS:ExtendedMultipleKeyHomomorphicEncryptionoverCKKS》中科院2区总结提出了xMK-CKKS,一种多密钥同态方案。客户端使用聚合公钥加密梯度,解密的时候需要所有客户端提供解密份额,协助服务器解密总和。基于FadAvg和XMK-CKKS提出一个ppfl模型。在半诚实模型下可以防止n-1个客户端和服务器的勾结。xMK-CKKS###setu
- Adversarial examples based on object detection tasks: A survey》论文阅读笔记
2301_80355452
目标检测论文阅读笔记
这是一篇关于目标检测任务中对抗样本攻击的综述论文。文章介绍了深度学习在计算机中的应用,以及对抗样本攻击的相关概念和方法,其中重点讨论了目标检测任务中基于分类和回归的对抗样本攻击,并对其他相关攻击方法进行了总结,最后得出结论并展望未来研究方向。1.引言深度学习背景:深度学习在处理图像或视频数据方面具有优势,广泛应用于计算机视觉任务,但由于深度网络的复杂结构,其存在脆弱性,容易受到攻击。目标检测任务:
- LeNet-5详解
巷955
cnn人工智能神经网络
LeNet-5是卷积神经网络(CNN)的开山之作,由YannLeCun团队于1998年提出,最初用于手写数字识别(MNIST数据集)。以下是其详细解析:1.网络结构LeNet-5由7层组成(不含输入层),包含2个卷积层、2个池化层和3个全连接层。以下是经典结构(输入为32×32灰度图像):层类型参数说明输出尺寸输入层32×32×1(MNIST图像被填充至32×32)32×32×1卷积层C16个5×
- Python----卷积神经网络(LeNet-5的手写体识别)
蹦蹦跳跳真可爱589
Python卷积神经网络pythoncnn深度学习人工智能神经网络
一、设置随机种子设置随机种子有助于结果的可复现性。importnumpyasnp#导入NumPy库importrandom#导入随机数生成库importos#导入操作系统相关功能importtorch#导入PyTorch库defsetup_seed(seed=0):#设置NumPy的随机种子np.random.seed(seed)#设置Python内置的随机数生成器的种子random.seed(s
- 论文阅读笔记—— AdvFilter: Predictive Perturbation-aware Filtering against Adversarial Attack via Multi-d L
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录AdvFilter:PredictivePerturbation-awareFilteringagainstAdversarialAttackviaMulti-domainLearning背景贡献相关工作对抗性去噪防御对抗性训练防御其他对抗性防御方法一般图像去噪创新公式方法多域学习实验AdvFilter:PredictivePerturbation-awareFilteringagains
- 手搓LeNet-5(基础模型)实现交通标志识别
竹之却
机器学习LeNet-5CNN卷积神经网络基础模型神经网络python
手搓LeNet-5(基础模型)实现交通标志识别一、环境准备1.安装Python环境2.安装CUDA(可选,仅需GPU加速时)3.配置虚拟环境4.安装PyTorch核心库5.安装辅助库6.验证安装7.准备数据集8.常见问题处理二、数据集处理三、模型实现四、训练流程五、模型部署5.1导出为ONNX格式5.2使用Flask部署服务5.3测试API六、总结本文将使用PyTorch从零实现经典的LeNet-
- LeNet神经网络
code 旭
AI人工智能学习神经网络人工智能深度学习
一、LeNet概述1.历史地位开创性模型:首个成功应用的卷积神经网络(1998年)应用场景:手写数字识别(MNIST数据集)、银行支票识别提出者:YannLeCun团队(论文《Gradient-BasedLearningAppliedtoDocumentRecognition》)2.核心创新传统全连接网络LeNet卷积操作权值共享下采样二、网络结构详解(LeNet-5)1.经典架构图2.各层参数说
- 《深度学习》课程之卷积神经网络原理与实践教学设计方案
人工智能教学实践
人工智能DeepSeek
《深度学习》课程之卷积神经网络原理与实践教学设计方案一、教学目标设计(一)知识目标学生能够准确描述卷积神经网络(CNN)的基本定义,包括其核心组成部分(如卷积层、池化层、全连接层等)及其在图像识别任务中的作用。理解卷积神经网络的基本工作原理,掌握卷积运算、池化操作的数学定义和物理意义,以及它们对图像特征提取的影响。了解LeNet-5模型的网络结构,包括各层的参数设置、输入输出维度等。(二)技能目标
- 【论文阅读笔记】Attention Is All You Need
时光机゚
论文阅读笔记
论文小结 这是17年的老论文了,Transformer的出处,刚发布时的应用场景是文字翻译。BLUE是机器翻译任务中常用的一个衡量标准。 在此论文之前,序列翻译的主导模型是RNN或者使用编解码器结构的CNN。本文提出的Transformer结构不需要使用循环和卷积结构,是完全基于注意力机制的模型。Transformer在序列转换上具有高并行度,在两个机器翻译的任务上都得到了卓越的成果,且其训练
- 使用PyTorch实现LeNet-5并在Fashion-MNIST数据集上训练
意.远
pytorch人工智能python深度学习
本文将展示如何使用PyTorch实现经典的LeNet-5卷积神经网络,并在Fashion-MNIST数据集上进行训练和评估。代码包含完整的网络定义、数据加载、训练流程及结果可视化。1.导入依赖库importtorchfromtorchimportnnfromd2limporttorchasd2l2.定义LeNet-5网络结构通过PyTorch的nn.Sequential构建网络,包含卷积层、池化层
- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- GS-SLAM论文阅读笔记-MGSO
zenpluck
GS论文阅读论文阅读笔记
前言MGSO首字母缩略词是直接稀疏里程计(DSO),我们建立的光度SLAM系统和高斯飞溅(GS)的混合。这应该是第一个前端用DSO的高斯SLAM,不知道这个系统的组合能不能打得过ORB-SLAM3,以及对DSO会做出怎么样的改进以适应高斯地图,接下来就看一下吧!GishelloG^s_ihelloGishello我是红色文章目录前言1.背景介绍2.关键内容2.1SLAMmodule2.2Dense
- 论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习语言模型
QLoRA论文4-bit标准浮点数量化常见的量化技术是最大绝对值量化:XInt8=round(127absmax(XFP32)XFP32)=round(cFP32,XFP32)式(1)X^{Int8}=round(\frac{127}{absmax(X^{FP32})}X^{FP32})=round(c^{FP32},X^{FP32})\qquad\qquad\text{式(1)}XInt8=ro
- LeNet-5卷积神经网络详解
LChuck
深度学习人工智能神经网络深度学习数据结构计算机视觉AIGC
LeNet-5卷积神经网络详解1.历史背景LeNet-5是由YannLeCun等人在1998年提出的一种卷积神经网络架构,是深度学习领域的一个重要里程碑。这个网络最初是为了解决手写数字识别问题而设计的,在当时取得了突破性的成果。它的成功不仅证明了卷积神经网络在计算机视觉任务中的有效性,更为后来深度学习的发展奠定了重要基础。图1:LeNet-5网络结构示意图2.网络结构LeNet-5的结构非常优雅且
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- jdk tomcat 环境变量配置
Array_06
javajdktomcat
Win7 下如何配置java环境变量
1。准备jdk包,win7系统,tomcat安装包(均上网下载即可)
2。进行对jdk的安装,尽量为默认路径(但要记住啊!!以防以后配置用。。。)
3。分别配置高级环境变量。
电脑-->右击属性-->高级环境变量-->环境变量。
分别配置 :
path
&nbs
- Spring调SDK包报java.lang.NoSuchFieldError错误
bijian1013
javaspring
在工作中调另一个系统的SDK包,出现如下java.lang.NoSuchFieldError错误。
org.springframework.web.util.NestedServletException: Handler processing failed; nested exception is java.l
- LeetCode[位运算] - #136 数组中的单一数
Cwind
java题解位运算LeetCodeAlgorithm
原题链接:#136 Single Number
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现两次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
题目限定了线性的时间复杂度,同时不使用额外的空间,即要求只遍历数组一遍得出结果。由于异或运算 n XOR n = 0, n XOR 0 = n,故将数组中的每个元素进
- qq登陆界面开发
15700786134
qq
今天我们来开发一个qq登陆界面,首先写一个界面程序,一个界面首先是一个Frame对象,即是一个窗体。然后在这个窗体上放置其他组件。代码如下:
public class First { public void initul(){ jf=ne
- Linux的程序包管理器RPM
被触发
linux
在早期我们使用源代码的方式来安装软件时,都需要先把源程序代码编译成可执行的二进制安装程序,然后进行安装。这就意味着每次安装软件都需要经过预处理-->编译-->汇编-->链接-->生成安装文件--> 安装,这个复杂而艰辛的过程。为简化安装步骤,便于广大用户的安装部署程序,程序提供商就在特定的系统上面编译好相关程序的安装文件并进行打包,提供给大家下载,我们只需要根据自己的
- socket通信遇到EOFException
肆无忌惮_
EOFException
java.io.EOFException
at java.io.ObjectInputStream$PeekInputStream.readFully(ObjectInputStream.java:2281)
at java.io.ObjectInputStream$BlockDataInputStream.readShort(ObjectInputStream.java:
- 基于spring的web项目定时操作
知了ing
javaWeb
废话不多说,直接上代码,很简单 配置一下项目启动就行
1,web.xml
<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="h
- 树形结构的数据库表Schema设计
矮蛋蛋
schema
原文地址:
http://blog.csdn.net/MONKEY_D_MENG/article/details/6647488
程序设计过程中,我们常常用树形结构来表征某些数据的关联关系,如企业上下级部门、栏目结构、商品分类等等,通常而言,这些树状结构需要借助于数据库完成持久化。然而目前的各种基于关系的数据库,都是以二维表的形式记录存储数据信息,
- maven将jar包和源码一起打包到本地仓库
alleni123
maven
http://stackoverflow.com/questions/4031987/how-to-upload-sources-to-local-maven-repository
<project>
...
<build>
<plugins>
<plugin>
<groupI
- java IO操作 与 File 获取文件或文件夹的大小,可读,等属性!!!
百合不是茶
类 File
File是指文件和目录路径名的抽象表示形式。
1,何为文件:
标准文件(txt doc mp3...)
目录文件(文件夹)
虚拟内存文件
2,File类中有可以创建文件的 createNewFile()方法,在创建新文件的时候需要try{} catch(){}因为可能会抛出异常;也有可以判断文件是否是一个标准文件的方法isFile();这些防抖都
- Spring注入有继承关系的类(2)
bijian1013
javaspring
被注入类的父类有相应的属性,Spring可以直接注入相应的属性,如下所例:1.AClass类
package com.bijian.spring.test4;
public class AClass {
private String a;
private String b;
public String getA() {
retu
- 30岁转型期你能否成为成功人士
bijian1013
成长励志
很多人由于年轻时走了弯路,到了30岁一事无成,这样的例子大有人在。但同样也有一些人,整个职业生涯都发展得很优秀,到了30岁已经成为职场的精英阶层。由于做猎头的原因,我们接触很多30岁左右的经理人,发现他们在职业发展道路上往往有很多致命的问题。在30岁之前,他们的职业生涯表现很优秀,但从30岁到40岁这一段,很多人
- 【Velocity四】Velocity与Java互操作
bit1129
velocity
Velocity出现的目的用于简化基于MVC的web应用开发,用于替代JSP标签技术,那么Velocity如何访问Java代码.本篇继续以Velocity三http://bit1129.iteye.com/blog/2106142中的例子为基础,
POJO
package com.tom.servlets;
public
- 【Hive十一】Hive数据倾斜优化
bit1129
hive
什么是Hive数据倾斜问题
操作:join,group by,count distinct
现象:任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成;查看未完成的子任务,可以看到本地读写数据量积累非常大,通常超过10GB可以认定为发生数据倾斜。
原因:key分布不均匀
倾斜度衡量:平均记录数超过50w且
- 在nginx中集成lua脚本:添加自定义Http头,封IP等
ronin47
nginx lua csrf
Lua是一个可以嵌入到Nginx配置文件中的动态脚本语言,从而可以在Nginx请求处理的任何阶段执行各种Lua代码。刚开始我们只是用Lua 把请求路由到后端服务器,但是它对我们架构的作用超出了我们的预期。下面就讲讲我们所做的工作。 强制搜索引擎只索引mixlr.com
Google把子域名当作完全独立的网站,我们不希望爬虫抓取子域名的页面,降低我们的Page rank。
location /{
- java-3.求子数组的最大和
bylijinnan
java
package beautyOfCoding;
public class MaxSubArraySum {
/**
* 3.求子数组的最大和
题目描述:
输入一个整形数组,数组里有正数也有负数。
数组中连续的一个或多个整数组成一个子数组,每个子数组都有一个和。
求所有子数组的和的最大值。要求时间复杂度为O(n)。
例如输入的数组为1, -2, 3, 10, -4,
- Netty源码学习-FileRegion
bylijinnan
javanetty
今天看org.jboss.netty.example.http.file.HttpStaticFileServerHandler.java
可以直接往channel里面写入一个FileRegion对象,而不需要相应的encoder:
//pipeline(没有诸如“FileRegionEncoder”的handler):
public ChannelPipeline ge
- 使用ZeroClipboard解决跨浏览器复制到剪贴板的问题
cngolon
跨浏览器复制到粘贴板Zero Clipboard
Zero Clipboard的实现原理
Zero Clipboard 利用透明的Flash让其漂浮在复制按钮之上,这样其实点击的不是按钮而是 Flash ,这样将需要的内容传入Flash,再通过Flash的复制功能把传入的内容复制到剪贴板。
Zero Clipboard的安装方法
首先需要下载 Zero Clipboard的压缩包,解压后把文件夹中两个文件:ZeroClipboard.js
- 单例模式
cuishikuan
单例模式
第一种(懒汉,线程不安全):
public class Singleton { 2 private static Singleton instance; 3 pri
- spring+websocket的使用
dalan_123
一、spring配置文件
<?xml version="1.0" encoding="UTF-8"?><beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.or
- 细节问题:ZEROFILL的用法范围。
dcj3sjt126com
mysql
1、zerofill把月份中的一位数字比如1,2,3等加前导0
mysql> CREATE TABLE t1 (year YEAR(4), month INT(2) UNSIGNED ZEROFILL, -> day
- Android开发10——Activity的跳转与传值
dcj3sjt126com
Android开发
Activity跳转与传值,主要是通过Intent类,Intent的作用是激活组件和附带数据。
一、Activity跳转
方法一Intent intent = new Intent(A.this, B.class); startActivity(intent)
方法二Intent intent = new Intent();intent.setCla
- jdbc 得到表结构、主键
eksliang
jdbc 得到表结构、主键
转自博客:http://blog.csdn.net/ocean1010/article/details/7266042
假设有个con DatabaseMetaData dbmd = con.getMetaData(); rs = dbmd.getColumns(con.getCatalog(), schema, tableName, null); rs.getSt
- Android 应用程序开关GPS
gqdy365
android
要在应用程序中操作GPS开关需要权限:
<uses-permission android:name="android.permission.WRITE_SECURE_SETTINGS" />
但在配置文件中添加此权限之后会报错,无法再eclipse里面正常编译,怎么办?
1、方法一:将项目放到Android源码中编译;
2、方法二:网上有人说cl
- Windows上调试MapReduce
zhiquanliu
mapreduce
1.下载hadoop2x-eclipse-plugin https://github.com/winghc/hadoop2x-eclipse-plugin.git 把 hadoop2.6.0-eclipse-plugin.jar 放到eclipse plugin 目录中。 2.下载 hadoop2.6_x64_.zip http://dl.iteye.com/topics/download/d2b
- 如何看待一些知名博客推广软文的行为?
justjavac
博客
本文来自我在知乎上的一个回答:http://www.zhihu.com/question/23431810/answer/24588621
互联网上的两种典型心态:
当初求种像条狗,如今撸完嫌人丑
当初搜贴像条犬,如今读完嫌人软
你为啥感觉不舒服呢?
难道非得要作者把自己的劳动成果免费给你用,你才舒服?
就如同 Google 关闭了 Gooled Reader,那是
- sql优化总结
macroli
sql
为了是自己对sql优化有更好的原则性,在这里做一下总结,个人原则如有不对请多多指教。谢谢!
要知道一个简单的sql语句执行效率,就要有查看方式,一遍更好的进行优化。
一、简单的统计语句执行时间
declare @d datetime ---定义一个datetime的变量set @d=getdate() ---获取查询语句开始前的时间select user_id
- Linux Oracle中常遇到的一些问题及命令总结
超声波
oraclelinux
1.linux更改主机名
(1)#hostname oracledb 临时修改主机名
(2) vi /etc/sysconfig/network 修改hostname
(3) vi /etc/hosts 修改IP对应的主机名
2.linux重启oracle实例及监听的各种方法
(注意操作的顺序应该是先监听,后数据库实例)
&nbs
- hive函数大全及使用示例
superlxw1234
hadoophive函数
具体说明及示例参 见附件文档。
文档目录:
目录
一、关系运算: 4
1. 等值比较: = 4
2. 不等值比较: <> 4
3. 小于比较: < 4
4. 小于等于比较: <= 4
5. 大于比较: > 5
6. 大于等于比较: >= 5
7. 空值判断: IS NULL 5
- Spring 4.2新特性-使用@Order调整配置类加载顺序
wiselyman
spring 4
4.1 @Order
Spring 4.2 利用@Order控制配置类的加载顺序
4.2 演示
两个演示bean
package com.wisely.spring4_2.order;
public class Demo1Service {
}
package com.wisely.spring4_2.order;
public class