- 程序员职业发展:元学习比技术更重要?
AI天才研究院
AI人工智能与大数据学习ai
程序员职业发展:元学习比技术更重要?关键词:程序员职业发展、元学习、技术、学习能力、知识更新摘要:在快速发展的科技领域,程序员面临着技术不断更新换代的挑战。本文深入探讨了在程序员职业发展中,元学习与技术的重要性对比。通过分析元学习的核心概念、其在职业发展中的作用,结合技术的特点和局限,阐述了元学习为何可能在长远的职业发展中更为关键。同时,提供了实际的案例和操作步骤,介绍了相关的工具和资源,最后对未
- 《忆读书》试讲教案及备课思路
捡起书来
单元首页揭示了第八单元的人文主题和语文要素,见下图:单元导语定下人文主题:书上有路勤为径。语文要素定下单元学习目标:1、阅读时注意梳理信息,把握内容要点。2、根据表达的需要,分段表述,突出重点。下面正式进入课文:一、教学目标:①知识与技能:把握课文记叙的主要内容②过程与方法:通过多种朗读形式,品位文中富有感染力的语句,感受作者所表达的“读书是我生命中最大的快乐”的情感。③情感态度价值观:理解“读书
- 四(上)《麻雀》试讲教案及备课思路
捡起书来
单元首页揭示了第五单元的人文主题和语文要素,见下图:单元导语定下人文主题:我手写我心,彩笔绘生活。语文要素定下单元学习目标:1、了解作者是怎样把事情写清楚的。2、写一件事,把事情写清楚。下面正式进入课文:一、教学目标:①知识与技能:能够找出描写小麻雀、猎狗、老麻雀的神态、动作的句子,感受爱的强大力量。②过程与方法:抓住重点语句,结合生活实际展开想象,体会作者通过神态、动作描写表现人物形象的写作方法
- 基于小样本学习的图像分类综述
cdyyyyyyy
学习分类机器学习
目录引言基本概念小样本学习方法分类1、数据增强2、迁移学习3、元学习小样本学习主流方法1、基于度量的小样本学习2、基于Pretraining+FineTuning的方法3、基于元学习的小样本学习总结引言因为课程设计要求,所以进行了关于小样本学习的调研。目前小样本学习还是一个比较热门的研究,很多关于小样本学习的论文也陆续发表。本文只是一个概述,具体方法研究还有待深入。基本概念小样本学习(FSL:Fe
- 【论文阅读】Meta-SE: A Meta-Learning Framework for Few-Shot Speech Enhancement
Bosenya12
论文阅读
这篇文章介绍了一个名为Meta-SE的元学习框架,专门用于少样本(few-shot)语音增强问题。文章的核心目标是解决在实际应用中,由于训练样本有限而导致传统深度神经网络(DNN)模型性能受限的问题。Meta-SE通过元学习的方法,利用先验的元知识快速适应新的任务和噪声类型,即使只有少量训练样本也能表现出色。背景知识与研究动机语音增强技术旨在从带噪语音信号中恢复目标语音,提升语音质量和可懂度。深度
- 让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!
Echo_Wish
Python进阶人工智能学习
让AI自己学会“怎么学”——元学习,才是高效训练的终极武器!朋友们,今天咱不聊ChatGPT,不聊大模型黑魔法,也不玩Prompt咒语。我想聊一个比“怎么训模型”更底层、更值得思考的问题:如果我们能让模型自己学会怎么更快、更聪明地学习,是不是就能少走很多弯路?这,就是元学习(MetaLearning)要解决的事儿。说白了,元学习是AI给AI上培训课的过程。咱们天天琢磨怎么喂模型数据、调超参、搞迁移
- 元学习的认知思维棱镜
由数入道
AI辅助教学学习元学习思维模型认知框架思维棱镜
在学习这场马拉松中,大多数人只关注如何跑得更快(学习方法),但元学习关注的却是如何学会规划路线、调整呼吸、监测体能,甚至理解身体(大脑)的运作机制,从而跑得更远、更有效率。元学习(Meta-Learning)——“学会学习”的底层操作系统本质:元学习,简而言之,就是我们的大脑如何学习、如何反思学习过程、并如何优化学习策略的能力。它不是学习具体知识,而是学习如何学习知识本身。它好比你手中的智能手机,
- 【LLaMA 3实战】6、LLaMA 3上下文学习指南:从少样本提示到企业级应用实战
无心水
LLaMA3模型实战专栏llamaLLaMA3实战LLaMa3上下文AI入门程序员的AI开发第一课人工智能AI
一、上下文学习(ICL)的技术本质与LLaMA3突破(一)ICL的核心原理与模型机制上下文学习(In-ContextLearning)的本质是通过提示词激活预训练模型的元学习能力,使模型无需微调即可适应新任务。LLaMA3的ICL架构通过以下机制实现突破:任务抽象:从示例中提取输入输出映射规则,如情感分析中的正负向判断模式模式泛化:将规则迁移到新输入,支持跨领域知识迁移动态适应:实时调整注意力分布
- 衡水中学状元数学学习资料完整攻略
向沙托夫问好
本文还有配套的精品资源,点击获取简介:《状元全科笔记衡水内部资料数学学习文档》提供了一个全面的数学学习资源,旨在通过衡水中学的教学经验和方法提升学生的数学成绩。资料包含基础知识、题型解析、模块训练、思维拓展和学习方法,引导学生深入理解数学概念,培养逻辑思维和解决问题的能力。文档结构清晰,内容详实,附带使用指南,帮助学生系统提升数学素养,实现学习效率和成绩的双重提高。1.状元学习方法分享在追求卓越成
- Python机器学习元学习库higher
音程
机器学习人工智能python机器学习
higher是一个用于元学习(Meta-Learning)和高阶导数(Higher-ordergradients)的Python库,专为PyTorch设计。它扩展了PyTorch的自动微分机制,使得在训练过程中可以动态地计算参数的梯度更新,并把这些更新过程纳入到更高阶的梯度计算中。一、主要用途higher主要用于以下场景:元学习(Meta-Learning)比如MAML(Model-Agnosti
- 元学习在个性化医疗AI中的应用研究
SuperAGI2025
AI大模型应用开发宝典学习人工智能ai
元学习在个性化医疗AI中的应用研究关键词:元学习、个性化医疗、人工智能、机器学习、医疗应用、算法原理、临床决策摘要:本文聚焦于元学习在个性化医疗AI中的应用研究。首先介绍了研究的背景,包括目的、预期读者、文档结构和相关术语。接着阐述了元学习和个性化医疗的核心概念及联系,详细讲解了元学习的核心算法原理并给出Python示例代码。同时,给出了相关数学模型和公式并举例说明。通过项目实战展示了元学习在个性
- 元学习与Transformer的结合:Meta-Transformer架构解析
AI智能探索者
AIAgent智能体开发实战学习transformer架构ai
元学习与Transformer的结合:Meta-Transformer架构解析关键词:元学习、Transformer、Meta-Transformer、架构解析、深度学习摘要:本文主要探讨了元学习与Transformer结合形成的Meta-Transformer架构。首先介绍了相关背景知识,包括元学习和Transformer的基本概念。接着详细解释了Meta-Transformer的核心概念,分析
- AIGC模型泛化能力:文心一言的多场景适应
AI原生应用开发
AI原生应用开发AIGC文心一言ai
AIGC模型泛化能力:文心一言的多场景适应关键词:AIGC、泛化能力、文心一言、多场景适应、迁移学习、元学习、领域适配摘要:本文深入解析百度文心一言在多场景下的泛化能力构建技术,从核心概念、算法原理、数学模型到实战应用展开分析。通过揭示文心一言的分层适配架构、动态知识融合机制及多模态协同策略,探讨其如何突破单一场景限制,实现内容生成、智能交互、跨领域任务的高效迁移。结合具体代码案例和数学推导,展示
- 基于PyTorch的少样本学习(Few-shot Learning)实现
AI原生应用开发
pytorch学习人工智能ai
基于PyTorch的少样本学习(Few-shotLearning)实现:用"小抄"教会AI快速学习新任务关键词:少样本学习、PyTorch、元学习、支持集、原型网络摘要:传统深度学习需要"海量数据喂养",但现实中很多场景(如罕见病诊断、新物种识别)只有少量样本。本文将用"小学生考试"的比喻,带您一步步理解少样本学习(Few-shotLearning)的核心原理,并用PyTorch实现一个能"看5张
- 迁移学习解析
劭清
深度学习迁移学习人工智能机器学习
一、迁移学习的核心价值1.1定义与范式演进迁移学习(TransferLearning)是通过将源领域的知识迁移到目标领域,提升目标领域模型性能的机器学习范式。其演进路径为:传统机器学习深度学习迁移学习元学习/领域自适应1.2核心优势对比方法数据需求训练成本适用场景传统训练大量标注数据高数据充足场景迁移学习少量标注数据低数据稀缺领域从头训练海量标注数据极高研究级场景1.3应用场景分析跨领域应用:自然
- Meta-Learning算法在机器人适应性控制中的底层机制
学习ing1
算法机器人人工智能
1.Meta-Learning算法基础1.1Meta-Learning定义与原理Meta-Learning,即元学习,是指让机器学会如何更好地学习,其核心在于通过对多个相关任务的学习来获取更高效的学习策略和知识迁移能力,从而在面对新任务时能够快速适应并取得较好的学习效果。其原理主要基于以下几个方面:任务分布假设:假设存在一个任务分布,通过对该分布中多个任务的学习,模型能够学习到一种通用的学习策略,
- 元学习在AIGC模型泛化能力提升中的作用
AI天才研究院
计算javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
引言随着人工智能技术的迅猛发展,生成式内容创造(AIGC,ArtificialIntelligenceGeneratedContent)成为了一个备受关注的热点领域。AIGC模型,通过机器学习和深度学习技术,能够自动生成文本、图像、音频等多种类型的内容,极大地提高了内容创造的效率和多样性。然而,这些模型在实际应用中面临着泛化能力不足的问题,即在训练数据集中表现良好,但在未知或不同类型的数据上表现不
- 从零到前沿:2025年人工智能系统性学习路径与最新技术融合指南
小李独爱秋
人工智能人工智能学习
一、构建人工智能认知框架(一)基础学科筑基数学核心能力线性代数:掌握矩阵运算(张量分解在推荐系统的应用)与特征值分析(PCA降维原理)概率统计:贝叶斯网络在医疗诊断中的应用,蒙特卡洛方法在强化学习的采样策略优化理论:2025年主流的元学习(Meta-Learning)框架中的二阶优化算法发展计算机科学基础数据结构:图神经网络(GNN)中的邻接矩阵存储优化操作系统:分布式训练中的GPU资源调度策略(
- AGI彻底实现还有3大鸿沟需要跨越-现在人类离AGI还很远
TGITCIC
AI-大模型的落地之道agi人工智能AIGC通用人工智能实现AGI大模型大模型开源
(前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站)。一、AGI的现状:从“专才”到“通才”的鸿沟1.1当下的AI:任务型“天才”与全能型“学渣”GPT-4在代码生成、文本创作等单一领域已接近人类水平,但跨领域迁移能力薄弱。例如,斯坦福大学测试显示,用文学分析模型解微分方程的错误率高达92%。这暴露出当前模型的核心缺陷——缺乏“元学习”能力。1.2中
- 基于元学习的快速适应推荐算法
AI天才研究院
ChatGPTAI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
基于元学习的快速适应推荐算法关键词推荐系统,元学习,快速适应,算法优化,协同过滤摘要本文主要介绍了基于元学习的快速适应推荐算法。首先,对推荐系统的基本概念、发展历程、核心概念和架构进行了概述。接着,详细探讨了元学习的基础知识、分类、优势以及快速适应推荐算法的原理和优缺点。随后,深入分析了元学习在推荐系统中的应用、实现和挑战。最后,通过一个实际项目案例,展示了基于元学习的快速适应推荐系统的实现过程、
- 通用型AI智能体Manus:技术突破与OpenManus云平台革命
Loving_enjoy
实用技巧人工智能
一、通用型AI智能体的进化:Manus的技术突破**在人工智能技术从专用型向通用型跨越的浪潮中,Manus作为新一代通用AI智能体,正重新定义人机协作的边界。其核心价值在于突破了传统AI模型"单一场景适配"的局限,构建了可自主进化、多模态交互、跨领域迁移的智能体系。**1.Manus的四大技术支柱**(1)**元学习驱动的认知框架**Manus采用混合式元学习架构(HybridMeta-Learn
- 第37篇Personalized Federated Learning: A Meta-Learning Approach(perfedavg联邦学习+元学习)2020个性化联邦学习使用Hessian
还不秃顶的计科生
联邦学习学习
第一部分:解决的问题联邦学习(FL)在多用户协同训练模型时,因数据隐私和通信限制,用户仅与中央服务器交互。传统FL方法得到的全局模型无法适应各用户的异质数据,导致在用户本地数据集上性能不佳因此这篇论文旨在解决联邦学习中模型缺乏个性化的问题第二部分:idea基于模型无关元学习(MAML)框架,提出个性化联邦学习问题的新公式。通过寻找一个初始共享模型,让用户基于自身数据执行少量梯度下降步骤就能快速适应
- KDD 2023 | 先睹为快!KDD 2023论文合集50篇(附下载地址)
马拉AI
机器学习人工智能深度学习
下载地址:点我跳转1.DoubleAdapt:AMeta-learningApproachtoIncrementalLearningforStockTrendForecastingCode:NoneArea:一种用于股票趋势预测增量学习的元学习方法2.HomoGCL:RethinkingHomophilyinGraphContrastiveLearningCode:https://github.c
- 一切皆是映射:量子机器学习与传统元学习的融合
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的瓶颈当前,人工智能(AI)取得了令人瞩目的进步,尤其是在图像识别、自然语言处理等领域。然而,AI仍然面临着一些瓶颈,例如:数据依赖性:AI模型通常需要大量的训练数据才能达到良好的性能,而获取和标注这些数据往往成本高昂。泛化能力:AI模型在面对未见过的数据时,泛化能力往往不足,容易出现过拟合等问题。可解释性:AI模型的决策过程往往难以解释,这限制了其在一些关键领域的应用。
- 一切皆是映射:元学习中的神经架构搜索(NAS)
杭州大厂Java程序媛
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能
元学习神经架构搜索NAS遗传算法强化学习演化算法一切皆是映射:元学习中的神经架构搜索(NAS)在人工智能的广阔领域中,神经架构搜索(NeuralArchitectureSearch,简称NAS)是一颗璀璨的明星,它代表着一种全新的方法,即通过算法自动寻找最优的神经网络架构。这种思想源于元学习(Meta-Learning),它关注的是如何使学习过程本身变得更加高效。本文将深入探讨NAS的原理、方法、
- 【86】喜欢“折腾”的余老师
亲亲鱼老师
“我们的进度会比其他班级慢一点,因为我们的实践作业会多一些,希望你们能够明白老师要求做的一切……第三单元学习写观察日记,为了学生体验感再强一些,我让孩子们种植大蒜,每天再写一篇观察日记。原本想着连续让孩子们观察六天就好,结果是六天结束了,孩子们因各种各样的原因,小蒜苗的生长各不相同,关键是真正长出绿色叶子的没几个,于是决定再继续观察几天……要问我为什么喜欢如此折腾?我想我能给的答案一定是为了所有的
- 元学习(meta learning)(一)
前行居士
学习人工智能神经网络深度学习机器学习元学习
元学习从字面的意思就是“学习”的“学习”,也就是学习如何学习。大部分的深度学习就是在不断的调整超参数,或者在决定网络架构,改变学习率等等。实际上没有什么好方法来调这些超参,今天工业界最常拿来解决调整超参数的方法是买很多张GPU,然后一次训练多个模型,有的训练不起来、训练效果比较差的话就输入掉,最后只看那些可以训练的比较好的模型会得到什么样的性能。所以在业界做实验的时候往往就是一次开几张GPU,这些
- 《压缩空气》
Hecate0523
本节课的内容,主要是通过空气和水的体积改变对比实验,来探究空气的体积可以改变,有弹性。在引发的本节课的内容时,我使用了两个球一个气球一个水球,为上节课空气占据空间,有体积,又进一步加深知识学习。通过手捏和压,让学生在激发兴趣的过程中,感受了一下我们可以对空气和水施加力让它们有变化。在做压缩实验的过程中,先介绍了注射器的结构、量程、以及如何读数,学生在上个单元学习了温度计后,在学习这个注射器对于刻度
- 11-22各数的认识之备课思
马明洋河南信阳
11—20各数的认识是一年级上册第六单元的教学内容,至此之前,学生已经在第三单元学习了1—5的认识和加减法、第五单元学习了6—10的认识和加减法。即,11—20各数的认识是在学习了“1—10的认识”基础上对数的进一步认识。1—10的教学重点是使学生体验1—9从数量到数的抽象过程,通过9再加1就是十,体会十的表达与1—9的不同是在新的位置上写1,这个位置叫十位,十位上的1表示1个十,1个十用数字符号
- 论文阅读笔记《SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learning》
深视
论文阅读笔记#小样本学习深度学习小样本学习
小样本学习&元学习经典论文整理||持续更新核心思想 本文提出一种基于最近邻方法的小样本学习算法(SimpleShot),作者指出目前大量的小样本学习算法都采用了元学习的方案,而作者却发现使用简单的特征提取器+最近邻分类器的方法就能实现非常优异的小样本分类效果。本文首先用特征提取网络fθf_{\theta}fθ+线性分类器在一个基础数据集上对网络进行训练,将训练得到的特征提取网络增加一个简单的特征
- jQuery 键盘事件keydown ,keypress ,keyup介绍
107x
jsjquerykeydownkeypresskeyup
本文章总结了下些关于jQuery 键盘事件keydown ,keypress ,keyup介绍,有需要了解的朋友可参考。
一、首先需要知道的是: 1、keydown() keydown事件会在键盘按下时触发. 2、keyup() 代码如下 复制代码
$('input').keyup(funciton(){  
- AngularJS中的Promise
bijian1013
JavaScriptAngularJSPromise
一.Promise
Promise是一个接口,它用来处理的对象具有这样的特点:在未来某一时刻(主要是异步调用)会从服务端返回或者被填充属性。其核心是,promise是一个带有then()函数的对象。
为了展示它的优点,下面来看一个例子,其中需要获取用户当前的配置文件:
var cu
- c++ 用数组实现栈类
CrazyMizzz
数据结构C++
#include<iostream>
#include<cassert>
using namespace std;
template<class T, int SIZE = 50>
class Stack{
private:
T list[SIZE];//数组存放栈的元素
int top;//栈顶位置
public:
Stack(
- java和c语言的雷同
麦田的设计者
java递归scaner
软件启动时的初始化代码,加载用户信息2015年5月27号
从头学java二
1、语言的三种基本结构:顺序、选择、循环。废话不多说,需要指出一下几点:
a、return语句的功能除了作为函数返回值以外,还起到结束本函数的功能,return后的语句
不会再继续执行。
b、for循环相比于whi
- LINUX环境并发服务器的三种实现模型
被触发
linux
服务器设计技术有很多,按使用的协议来分有TCP服务器和UDP服务器。按处理方式来分有循环服务器和并发服务器。
1 循环服务器与并发服务器模型
在网络程序里面,一般来说都是许多客户对应一个服务器,为了处理客户的请求,对服务端的程序就提出了特殊的要求。
目前最常用的服务器模型有:
·循环服务器:服务器在同一时刻只能响应一个客户端的请求
·并发服务器:服
- Oracle数据库查询指令
肆无忌惮_
oracle数据库
20140920
单表查询
-- 查询************************************************************************************************************
-- 使用scott用户登录
-- 查看emp表
desc emp
- ext右下角浮动窗口
知了ing
JavaScriptext
第一种
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/
- 浅谈REDIS数据库的键值设计
矮蛋蛋
redis
http://www.cnblogs.com/aidandan/
原文地址:http://www.hoterran.info/redis_kv_design
丰富的数据结构使得redis的设计非常的有趣。不像关系型数据库那样,DEV和DBA需要深度沟通,review每行sql语句,也不像memcached那样,不需要DBA的参与。redis的DBA需要熟悉数据结构,并能了解使用场景。
- maven编译可执行jar包
alleni123
maven
http://stackoverflow.com/questions/574594/how-can-i-create-an-executable-jar-with-dependencies-using-maven
<build>
<plugins>
<plugin>
<artifactId>maven-asse
- 人力资源在现代企业中的作用
百合不是茶
HR 企业管理
//人力资源在在企业中的作用人力资源为什么会存在,人力资源究竟是干什么的 人力资源管理是对管理模式一次大的创新,人力资源兴起的原因有以下点: 工业时代的国际化竞争,现代市场的风险管控等等。所以人力资源 在现代经济竞争中的优势明显的存在,人力资源在集团类公司中存在着 明显的优势(鸿海集团),有一次笔者亲自去体验过红海集团的招聘,只 知道人力资源是管理企业招聘的 当时我被招聘上了,当时给我们培训 的人
- Linux自启动设置详解
bijian1013
linux
linux有自己一套完整的启动体系,抓住了linux启动的脉络,linux的启动过程将不再神秘。
阅读之前建议先看一下附图。
本文中假设inittab中设置的init tree为:
/etc/rc.d/rc0.d
/etc/rc.d/rc1.d
/etc/rc.d/rc2.d
/etc/rc.d/rc3.d
/etc/rc.d/rc4.d
/etc/rc.d/rc5.d
/etc
- Spring Aop Schema实现
bijian1013
javaspringAOP
本例使用的是Spring2.5
1.Aop配置文件spring-aop.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans
xmlns="http://www.springframework.org/schema/beans"
xmln
- 【Gson七】Gson预定义类型适配器
bit1129
gson
Gson提供了丰富的预定义类型适配器,在对象和JSON串之间进行序列化和反序列化时,指定对象和字符串之间的转换方式,
DateTypeAdapter
public final class DateTypeAdapter extends TypeAdapter<Date> {
public static final TypeAdapterFacto
- 【Spark八十八】Spark Streaming累加器操作(updateStateByKey)
bit1129
update
在实时计算的实际应用中,有时除了需要关心一个时间间隔内的数据,有时还可能会对整个实时计算的所有时间间隔内产生的相关数据进行统计。
比如: 对Nginx的access.log实时监控请求404时,有时除了需要统计某个时间间隔内出现的次数,有时还需要统计一整天出现了多少次404,也就是说404监控横跨多个时间间隔。
Spark Streaming的解决方案是累加器,工作原理是,定义
- linux系统下通过shell脚本快速找到哪个进程在写文件
ronin47
一个文件正在被进程写 我想查看这个进程 文件一直在增大 找不到谁在写 使用lsof也没找到
这个问题挺有普遍性的,解决方法应该很多,这里我给大家提个比较直观的方法。
linux下每个文件都会在某个块设备上存放,当然也都有相应的inode, 那么透过vfs.write我们就可以知道谁在不停的写入特定的设备上的inode。
幸运的是systemtap的安装包里带了inodewatch.stp,位
- java-两种方法求第一个最长的可重复子串
bylijinnan
java算法
import java.util.Arrays;
import java.util.Collections;
import java.util.List;
public class MaxPrefix {
public static void main(String[] args) {
String str="abbdabcdabcx";
- Netty源码学习-ServerBootstrap启动及事件处理过程
bylijinnan
javanetty
Netty是采用了Reactor模式的多线程版本,建议先看下面这篇文章了解一下Reactor模式:
http://bylijinnan.iteye.com/blog/1992325
Netty的启动及事件处理的流程,基本上是按照上面这篇文章来走的
文章里面提到的操作,每一步都能在Netty里面找到对应的代码
其中Reactor里面的Acceptor就对应Netty的ServerBo
- servelt filter listener 的生命周期
cngolon
filterlistenerservelt生命周期
1. servlet 当第一次请求一个servlet资源时,servlet容器创建这个servlet实例,并调用他的 init(ServletConfig config)做一些初始化的工作,然后调用它的service方法处理请求。当第二次请求这个servlet资源时,servlet容器就不在创建实例,而是直接调用它的service方法处理请求,也就是说
- jmpopups获取input元素值
ctrain
JavaScript
jmpopups 获取弹出层form表单
首先,我有一个div,里面包含了一个表单,默认是隐藏的,使用jmpopups时,会弹出这个隐藏的div,其实jmpopups是将我们的代码生成一份拷贝。
当我直接获取这个form表单中的文本框时,使用方法:$('#form input[name=test1]').val();这样是获取不到的。
我们必须到jmpopups生成的代码中去查找这个值,$(
- vi查找替换命令详解
daizj
linux正则表达式替换查找vim
一、查找
查找命令
/pattern<Enter> :向下查找pattern匹配字符串
?pattern<Enter>:向上查找pattern匹配字符串
使用了查找命令之后,使用如下两个键快速查找:
n:按照同一方向继续查找
N:按照反方向查找
字符串匹配
pattern是需要匹配的字符串,例如:
1: /abc<En
- 对网站中的js,css文件进行打包
dcj3sjt126com
PHP打包
一,为什么要用smarty进行打包
apache中也有给js,css这样的静态文件进行打包压缩的模块,但是本文所说的不是以这种方式进行的打包,而是和smarty结合的方式来把网站中的js,css文件进行打包。
为什么要进行打包呢,主要目的是为了合理的管理自己的代码 。现在有好多网站,你查看一下网站的源码的话,你会发现网站的头部有大量的JS文件和CSS文件,网站的尾部也有可能有大量的J
- php Yii: 出现undefined offset 或者 undefined index解决方案
dcj3sjt126com
undefined
在开发Yii 时,在程序中定义了如下方式:
if($this->menuoption[2] === 'test'),那么在运行程序时会报:undefined offset:2,这样的错误主要是由于php.ini 里的错误等级太高了,在windows下错误等级
- linux 文件格式(1) sed工具
eksliang
linuxlinux sed工具sed工具linux sed详解
转载请出自出处:
http://eksliang.iteye.com/blog/2106082
简介
sed 是一种在线编辑器,它一次处理一行内容。处理时,把当前处理的行存储在临时缓冲区中,称为“模式空间”(pattern space),接着用sed命令处理缓冲区中的内容,处理完成后,把缓冲区的内容送往屏幕。接着处理下一行,这样不断重复,直到文件末尾
- Android应用程序获取系统权限
gqdy365
android
引用
如何使Android应用程序获取系统权限
第一个方法简单点,不过需要在Android系统源码的环境下用make来编译:
1. 在应用程序的AndroidManifest.xml中的manifest节点
- HoverTree开发日志之验证码
hvt
.netC#asp.nethovertreewebform
HoverTree是一个ASP.NET的开源CMS,目前包含文章系统,图库和留言板功能。代码完全开放,文章内容页生成了静态的HTM页面,留言板提供留言审核功能,文章可以发布HTML源代码,图片上传同时生成高品质缩略图。推出之后得到许多网友的支持,再此表示感谢!留言板不断收到许多有益留言,但同时也有不少广告,因此决定在提交留言页面增加验证码功能。ASP.NET验证码在网上找,如果不是很多,就是特别多
- JSON API:用 JSON 构建 API 的标准指南中文版
justjavac
json
译文地址:https://github.com/justjavac/json-api-zh_CN
如果你和你的团队曾经争论过使用什么方式构建合理 JSON 响应格式, 那么 JSON API 就是你的 anti-bikeshedding 武器。
通过遵循共同的约定,可以提高开发效率,利用更普遍的工具,可以是你更加专注于开发重点:你的程序。
基于 JSON API 的客户端还能够充分利用缓存,
- 数据结构随记_2
lx.asymmetric
数据结构笔记
第三章 栈与队列
一.简答题
1. 在一个循环队列中,队首指针指向队首元素的 前一个 位置。
2.在具有n个单元的循环队列中,队满时共有 n-1 个元素。
3. 向栈中压入元素的操作是先 移动栈顶指针&n
- Linux下的监控工具dstat
网络接口
linux
1) 工具说明dstat是一个用来替换 vmstat,iostat netstat,nfsstat和ifstat这些命令的工具, 是一个全能系统信息统计工具. 与sysstat相比, dstat拥有一个彩色的界面, 在手动观察性能状况时, 数据比较显眼容易观察; 而且dstat支持即时刷新, 譬如输入dstat 3, 即每三秒收集一次, 但最新的数据都会每秒刷新显示. 和sysstat相同的是,
- C 语言初级入门--二维数组和指针
1140566087
二维数组c/c++指针
/*
二维数组的定义和二维数组元素的引用
二维数组的定义:
当数组中的每个元素带有两个下标时,称这样的数组为二维数组;
(逻辑上把数组看成一个具有行和列的表格或一个矩阵);
语法:
类型名 数组名[常量表达式1][常量表达式2]
二维数组的引用:
引用二维数组元素时必须带有两个下标,引用形式如下:
例如:
int a[3][4]; 引用:
- 10点睛Spring4.1-Application Event
wiselyman
application
10.1 Application Event
Spring使用Application Event给bean之间的消息通讯提供了手段
应按照如下部分实现bean之间的消息通讯
继承ApplicationEvent类实现自己的事件
实现继承ApplicationListener接口实现监听事件
使用ApplicationContext发布消息