- 自编码器表征学习:重构误差与隐空间拓扑结构的深度解析
码字的字节
机器学习自编码器重构误差隐空间
自编码器基础与工作原理自编码器(Autoencoder)作为深度学习领域的重要无监督学习模型,其核心思想是通过模拟人类认知过程中的"压缩-解压"机制实现数据的表征学习。这种由GeoffreyHinton团队在2006年复兴的神经网络结构,本质上是一个试图通过编码-解码过程来复制其输入的系统,却在实现这一看似简单目标的过程中,意外地获得了强大的特征提取能力。基本架构与工作流程典型自编码器由对称的两部
- python学习day21
一叶知秋秋
python学习笔记学习
知识点回顾:1.LDA线性判别2.PCA主成分分析3.t-sne降维数据如前几期无监督降维定义:这类算法在降维过程中不使用任何关于数据样本的标签信息输入:只有特征矩阵X。目标:保留数据中尽可能多的方差(如PCA)。保留数据的局部或全局流形结构(如LLE,Isomap,t-SNE,UMAP)。找到能够有效重构原始数据的紧凑表示(如Autoencoder)。找到统计上独立的成分(如ICA)。典型算法:
- Keras深度学习实战——自编码器详解
鱼弦
机器学习设计类系统深度学习keras人工智能
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)Keras深度学习实战——自编码器详解简介自编码器(AutoEncoder)是一种无监督学习算法,它通过学习输入数据的潜在表示来实现数据降维和特征提取。自编码
- 【神经网络与深度学习】普通自编码器和变分自编码器的区别
如果树上有叶子
神经网络与深度学习深度学习神经网络人工智能自编码器变分自编码器
引言自编码器(Autoencoder,AE)和变分自编码器(VariationalAutoencoder,VAE)是深度学习中广泛应用的两类神经网络结构,主要用于数据的压缩、重构和生成。然而,二者在模型设计、训练目标和生成能力等方面存在显著区别。普通自编码器侧重于高效压缩数据并进行无损重构,而变分自编码器则通过潜在空间的概率分布,增强了模型的生成能力和泛化性能。本文将从多个角度探讨AE和VAE的不
- 【论文阅读】Examining of Shallow Autoencoder on Black-box Attack against Face Recognition
Bosenya12
论文阅读
摘要在本文中,我们提出了一种对人脸识别有效的黑盒对抗示例(A.E.)攻击。用于人脸识别的黑盒A.E.存在攻击成功概率低、攻击目标有限或计算复杂度大等多重问题,导致在许多实际场景中不切实际。因此,我们提出了一种更有效的利用黑盒A.E.攻击人脸识别系统的方法,基于Huang等人的A.E.生成方法,创建了一个适合人脸识别的攻击替代模型。为了进行评估,该方法和公共数据集用于攻击在人脸识别系统中注册的任意和
- 基于神经网络的聚类算法(1)——自组织映射神经网络(SOM)
root-cause
聚类算法原理解析及实现算法神经网络聚类
基于神经网络的聚类算法(1)——自组织映射神经网络(SOM)基于神经网络的聚类算法(2)——自编码器(AE)1.基于神经网络的聚类算法基于神经网络的聚类算法是一种利用神经网络模型进行数据聚类的方法。与传统的聚类算法相比,基于神经网络的聚类算法具有更强的非线性建模能力和自适应性,可以处理复杂的数据分布和高维数据。常见的基于神经网络的聚类算法包括自组织映射(SOM)、自编码器(Autoencoder)
- 【学习笔记(0)】Variational Autoencoder 变分自编码器
该账户已不存在
学习笔记人工智能机器学习自编码器
本文是VAE的学习笔记,是阅读多个网站的intro时记录的阅读笔记。VariationalAutoencodersExplained-https://anotherdatum.com/vae.html讲的很细,但看完之后不太有整体思路GenerativeModeling:WhatisaVariationalAutoencoder(VAE)?-https://www.mlq.ai/what-is-a
- 为什么VAE效果不好,但VAE+diffusion效果就好了?
AndrewHZ
深度学习新浪潮算法计算机视觉深度学习扩散模型VAE生成式模型技术分析
1.什么是VAE?VAE(VariationalAutoencoder,变分自编码器)是一种基于概率生成模型的深度学习框架,主要用于数据生成和潜在空间建模。它结合了自编码器(Autoencoder)的结构和变分推断(VariationalInference)的思想,能够从数据中学习有意义的潜在表示,并生成与训练数据相似的新样本。VAE的核心思想编码-解码结构类似传统自编码器,VAE包含两个部分:编
- 【核心算法篇七】《DeepSeek异常检测:孤立森林与AutoEncoder对比》
再见孙悟空_
「2025DeepSeek技术全景实战」算法分布式docker计算机视觉人工智能自然语言处理DeepSeek
大家好,今天我们来深入探讨一下《DeepSeek异常检测:孤立森林与AutoEncoder对比》这篇技术博客。我们将从核心内容、原理、应用场景等多个方面进行详细解析,力求让大家对这两种异常检测方法有一个全面而深入的理解。一、引言在数据科学和机器学习领域,异常检测(AnomalyDetection)是一个非常重要的任务。它的目标是从数据集中识别出那些与大多数数据显著不同的异常点。这些异常点可能是由于
- Mac M1 Comfyui 使用MMAudio遇到的问题解决?
福葫芦
macos
问题1:AssertionError:TorchnotcompiledwithCUDAenabled?解决办法:修改代码以CPU运行第一步:找到/ComfyUI/custom_nodes/ComfyUI-MMAudio/mmaudio/ext/autoencoder/vae.py文件中的下面这两行代码self.data_mean=nn.Buffer(torch.tensor(DATA_MEAN_1
- 论文阅读【CVPR-2022】3D Shape Variational Autoencoder Latent Disentanglement via Mini-Batch Feature Swappi
智尊宝人工智能社区
人工智能计算机视觉
3DShapeVariationalAutoencoderLatentDisentanglementviaMini-BatchFeatureSwappingforBodiesandFaces通过小批量特征互换实现身体和脸部的三维形状变异自动编码器潜移默化studyai.com搜索论文:3DShapeVariationalAutoencoderLatentDisentanglementviaMini
- 自动编码器 - Autoencoder
hellozhxy
深度学习人工智能机器学习
文章目录一、自编码器(Autoencoder)简单模型介绍二、神经网络自编码模型三、神经网络自编码器三大特点四、自编码器(Autoencoder)搭建五、几种常见编码器1.堆栈自动编码器2.欠完备自编码器3.正则自编码器4.噪自编码器(denoisingautoencoder,DAE)参考链接一、自编码器(Autoencoder)简单模型介绍暂且不谈神经网络、深度学习等,仅仅是自编码器的话,其原理
- Autoencoder
chuange6363
人工智能python
自编码器Autoencoder稀疏自编码器SparseAutoencoder降噪自编码器DenoisingAutoencoder堆叠自编码器StackedAutoencoder本博客是从梁斌博士的博客上面复制过来的,本人利用Tensorflow重新实现了博客中的代码深度学习有一个重要的概念叫autoencoder,这是个什么东西呢,本文通过一个例子来普及这个术语。简单来说autoencoder是一
- stl文件 python_STL_10数据集处理
weixin_39614094
stl文件python
这次要写的是stl10用于自编码器自编码,又称自编码器(autoencoder),是神经网络的一种,经过训练后能尝试将输入复制到输出。自编码器(autoencoder)内部有一个隐藏层h,可以产生编码(code)表示输入。该网络可以看作由两部分组成:一个由函数h=f(x)表示的编码器和一个生成重构的解码器r=g(h)。自编码器(Autoencoder,AE)是一个3层或者大于3层的神经网络,将输入
- 看demo学算法之 自编码器
小琳ai
算法
大家好,这里是小琳AI课堂!今天我们来聊聊自编码器。AE自编码器,全称为Autoencoder,是一种数据压缩算法,它能够通过学习输入数据的有效表示(编码)来重建输入数据(解码)。自编码器通常被用于无监督学习任务,尤其是在降维、特征学习、数据去噪等领域。下面,我将从四个不同的角度来详细解释AE自编码器。1.技术细节自编码器由两部分组成:编码器(encoder)和解码器(decoder)。编码器负责
- 生成网络总结
研三小学渣
学习笔记深度学习人工智能
AE(AutoEncoder)自编码器标准的AE由编码器(encoder)和解码器(decoder)两部分组成,。整个模型可以看作一个“压缩”与“解压”的过程:首先编码器将真实数据(真实样本)压缩为低维隐空间中的一个隐向量,该向量可以看作输入的“象征”;然后解码器将这个隐向量解压,得到生成数据(生成样本)。在训练过程中,会将生成样本与真实样本进行比较,朝着减小二者之间差异的方向去更新编码器和解码器
- 数据降维方法介绍(十二)
科技小白不能再白了
第八种方法:自编码器降维姓名:何源学号:21011210073学院:通信工程学院转载:基于自编码网络AutoEncoder完成数据降维并且提取数据的本质特征【嵌牛导读】自编码器降维方法简介【嵌牛鼻子】自编码器【嵌牛提问】自编码器降维原理是什么?【嵌牛正文】数据降维的意思是什么?一维数据我们可以认为它是一个点,二维数据是一条线,三维数据是一个面,但四维数据我们就想象不到了,但这并不意味着不存在。对于
- 深入理解vqvae
Adenialzz
人工智能机器学习计算机视觉
深入理解vqvaeTL;DR:通过vectorquantize技术,训练一个离散的codebook,实现了图片的离散表征。vqvae可以实现图片的离散压缩和还原,在图片自回归生成、StableDiffusion中,有重要的应用。从AE和VAE说起AE(AutoEncoder,自编码器)是非常经典的一种自监督表征学习方法,它由编码器encoder和解码器decoder构成,编码器提取输入图像的低维特
- Autoencoder 有什么用?
脏小明
autoencoder可以用来初始化神经网络的权重(即预训练:pre-training)和降维。如果在做autoencoder的时候激活函数为linear的话,那么这就相当于在做PCA了。
- AutoEncoder自动编码器、VAE变分自编码器、VQVAE量子化(离散化)的自编码器
丁希希哇
AIGC阅读学习算法深度学习人工智能pytorch
文章目录AutoEncoder自动编码器(一)AutoEncoder的基本架构(二)AutoEncoder的概率理解(三)AutoEncoder的局限VAE变分自编码器(VariationalAutoEncoder)(一)VAE简介(二)VAE的概率理解(三)VAE与AE(三)VAE与GAN(四)VAE的损失函数VQVAE量子化(离散化)的自编码器(一)VQVAE简介(二)VQVAE与VAE(三)
- PyTorch][chapter 13[李宏毅深度学习][Semi-supervised Linear Methods-2]
明朝百晓生
深度学习pytorch人工智能
前言:接上篇CSDN这里面重点讲下面4个方面目录:PCA-AnotherPointofview(SVD)PCA和AutoEncoder的关系PCA的缺点PCAPython例子一PCA-AnotherPointofview以手写数字7的图像为例,它由不同的笔画结构组成,分别为则手写数字7可以表示为上图1.1损失函数我们要找到一组向量使得最小(公式1.1)有论文证明过,这个最优解就是SVD奇异分解结果
- latent-diffusion model环境配置--我转载的
gaoenyang760525
人工智能深度学习
latent-diffusionmodel环境配置,这可能是你能够找到的最细的博客了_latentdiffusionmodel训练autoencoder-CSDN博客前言最近在研究diffusion模型,并对目前最火的stable-diffusion模型很感兴趣,又因为stable-diffusion是一种latent-diffusion模型,故尝试复现latent-diffusionmodel,
- VITS:Conditional Variational Autoencoder with Adversarial Learning forEnd-to-End Text-to-Speech——TTS
pied_piperG
语音识别音频深度学习机器学习神经网络VAE
笔记地址:https://flowus.cn/share/4c8c251b-cb8e-4f21-aa9e-139c1c3cf883【FlowUs息流】Vits论文地址:proceedings.mlr.pressAbstract与传统的two-stageTTS(即文字→mel频谱→声音)相比,是一种parallelend-to-endTTS,提升了效率且声音自然。其它parallel方法主要存在音质
- 深入学习卷积神经网络(CNN)的原理知识
AAI机器之心
cnn人工智能KNN深度学习机器学习神经网络tensorflow
在深度学习领域中,已经经过验证的成熟算法,目前主要有深度卷积网络(DNN)和递归网络(RNN),在图像识别,视频识别,语音识别领域取得了巨大的成功,正是由于这些成功,能促成了当前深度学习的大热。与此相对应的,在深度学习研究领域,最热门的是AutoEncoder、RBM、DBN等产生式网络架构,但是这些研究领域,虽然论文比较多,但是重量级应用还没有出现,是否能取得成功还具有不确定性。但是有一些比较初
- 【AI】深度学习在编码中的应用(4)
giszz
人工智能人工智能
目录一、基于自编码器的架构二、基于可逆网络的架构三、基于GAN模型的架构四、多层结构图像压缩框架今天学习和梳理基础架构设计的4种模式:一、基于自编码器的架构在人工智能应用中,自编码器(Autoencoder,AE)是一种无监督的神经网络模型,用于学习输入数据的编码表示(即特征),并能够从这种编码表示中重构原始数据。自编码器通常用于数据降维、特征学习、去噪等任务。在基础架构设计中,基于自编码器的架构
- 无监督神经网络原理与实现
10岁的小屁孩
机器学习神经网络人工智能
目录网络结构训练目标Python实现无监督神经网络通过学习输入数据本身的内在结构,而不需要标签信息,它可以用于特征提取、降维等任务。网络结构无监督学习中的一个常见结构是自编码器(Autoencoder)。自编码器旨在通过一种无监督的方式学习数据的有效表示(即编码)。它由两部分组成:编码器(Encoder)和解码器(Decoder)。编码器将输入数据压缩成一个低维表示,而解码器则将这个低维表示重构回
- 变分自编码器(Variational AutoEncoder,VAE)
溯源006
深度学习相关算法学习人工智能深度学习stablediffusionDALL·E2Imagen
1从AE谈起说到编码器这块,不可避免地要讲起AE(AutoEncoder)自编码器。它的结构下图所示:据图可知,AE通过自监督的训练方式,能够将输入的原始特征通过编码encoder后得到潜在的特征编码,实现了自动化的特征工程,并且达到了降维和泛化的目的。而后通过对进行decoder后,我们可以重构输出。一个良好的AE最好的状态就是解码器的输出能够完美地或者近似恢复出原来的输入,即。为此,训练AE所
- 深度学习--AutoEncoder异常值处理
Stitch的实习日记
深度学习深度学习人工智能
整体的算法思路:1.将正常样本与异常样本切分为:训练集X,训练集Y,测试集X,测试集Y2.AutoEncoder建模:建模3.用正样本数据训练AutoEncoder:因为AutoEncoder是要想办法复现原有数据,因此要确保AutoEncoder看到的都只是自身正常的数据,这样当异常的数据到来时,就会出现很突兀的状况,这也是我们要的效果。4.计算阈值:因为异常样本会造成很突兀的效果,但是突兀的程
- 降噪自编码器(Denoising Autoencoder)
不做梵高417
denoisingautoencoder
降噪自编码器(DenoisingAutoencoder)是一种用于无监督学习的神经网络模型。与普通的自编码器不同,降噪自编码器的目标是通过在输入数据中引入噪声,然后尝试从具有噪声的输入中重建原始无噪声数据。以下是降噪自编码器的主要特点和工作原理:1.噪声引入:在训练阶段,降噪自编码器将输入数据添加一些噪声,例如高斯噪声或随机失活(randomdropout)。这样的操作迫使网络学习对输入的噪声具有
- 乘骐骥以驰骋兮,来吾道夫先路——2023年大模型技术基础架构盘点与开源工作速览
中杯可乐多加冰
前沿资讯分享大模型GPTFalcon百川LLM
目录一、模型基本架构1.1、自回归(Autoregressive)模型架构1.2、自编码(Autoencoder)模型架构1.3、完整的编码-解码模型架构二、典型开源工作速览2.1、LLaMA-22.2、baichuan-22.3、Falcon2.4、BLOOM最后在过去的一年里,大模型技术在人工智能领域取得了巨大的进展和突破,成为业界瞩目的焦点。从优化的学习算法到激动人心的应用案例,从推动科研的
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><