本文中包含下面的内容
下面是Rocketmq中 AllocateMessageQueueAveragely 的源码
public List allocate(String consumerGroup, String currentCID, List mqAll,List cidAll) {
//省略参数校验、当前消费者id是否存在的校验
//走到下面的代码, 说明参数校验通过
int index = cidAll.indexOf(currentCID);
int mod = mqAll.size() % cidAll.size();
int averageSize =
mqAll.size() <= cidAll.size() ? 1 : (mod > 0 && index < mod ? mqAll.size() / cidAll.size()
+ 1 : mqAll.size() / cidAll.size());
int startIndex = (mod > 0 && index < mod) ? index * averageSize : index * averageSize + mod;
int range = Math.min(averageSize, mqAll.size() - startIndex);
for (int i = 0; i < range; i++) {
result.add(mqAll.get((startIndex + i) % mqAll.size()));
}
return result;
}
对代码分析如下:
下面是Rocketmq中 AllocateMessageQueueAveragelyByCircle的源码
public List allocate(String consumerGroup, String currentCID, List mqAll, List cidAll) {
//省略参数校验、当前消费者id是否存在的校验
//走到下面的代码, 说明参数校验通过
int index = cidAll.indexOf(currentCID);
for (int i = index; i < mqAll.size(); i++) {
if (i % cidAll.size() == index) {
result.add(mqAll.get(i));
}
}
return result;
}
对代码分析如下:
再举个例子:
假设有三个消费者、八个消息, 对普通分配方式和环形分配方式,分别如下:
Message Queue | ConsumerId |
---|---|
消息队列[0] | Consumer[0] |
消息队列[1] | Consumer[0] |
消息队列[2] | Consumer[0] |
消息队列[3] | Consumer[1] |
消息队列[4] | Consumer[1] |
消息队列[5] | Consumer[1] |
消息队列[6] | Consumer[2] |
消息队列[7] | Consumer[2] |
- 环形消费方式
Message Queue | ConsumerId |
---|---|
消息队列[0] | Consumer[0] |
消息队列[1] | Consumer[1] |
消息队列[2] | Consumer[2] |
消息队列[3] | Consumer[0] |
消息队列[4] | Consumer[1] |
消息队列[5] | Consumer[2] |
消息队列[6] | Consumer[0] |
消息队列[7] | Consumer[1] |
下面是手动配置的代码
public class AllocateMessageQueueByConfig implements AllocateMessageQueueStrategy {
private List messageQueueList;
@Override
public List allocate(String consumerGroup, String currentCID, List mqAll,
List cidAll) {
return this.messageQueueList;
}
@Override
public String getName() {
return "CONFIG";
}
public List getMessageQueueList() {
return messageQueueList;
}
public void setMessageQueueList(List messageQueueList) {
this.messageQueueList = messageQueueList;
}
}
代码分析:
进行分配的核心方法是allocate(), 从代码中可以看出分配的方式是从配置文件中获取相关的信息, 这中方式自己用的比较少,暂时忽略,后面有研究会进行相关内容更新。
下面是机房分配策略的代码
public List allocate(String consumerGroup, String currentCID, List mqAll,
List<String> cidAll) {
List result = new ArrayList();
int currentIndex = cidAll.indexOf(currentCID);
if (currentIndex < 0) {
return result;
}
List premqAll = new ArrayList();
for (MessageQueue mq : mqAll) {
String[] temp = mq.getBrokerName().split("@");
if (temp.length == 2 && consumeridcs.contains(temp[0])) {
premqAll.add(mq);
}
}
int mod = premqAll.size() / cidAll.size();
int rem = premqAll.size() % cidAll.size();
int startIndex = mod * currentIndex;
int endIndex = startIndex + mod;
for (int i = startIndex; i < endIndex; i++) {
result.add(mqAll.get(i));
}
if (rem > currentIndex) {
result.add(premqAll.get(currentIndex + mod * cidAll.size()));
}
return result;
}
可以通过下面的例子进一步了解,假设有三个消费者, 八个消息队列
Message Queue | Consumer |
---|---|
消息队列[0] | Consumer[0] |
消息队列[1] | Consumer[0] |
消息队列[2] | Consumer[1] |
消息队列[3] | Consumer[1] |
消息队列[4] | Consumer[2] |
消息队列[5] | Consumer[2] |
消息队列[6] | Consumer[0] |
消息队列[7] | Consumer[1] |
下面是一致性哈希算法的代码
public List<MessageQueue> allocate(String consumerGroup, String currentCID, List<MessageQueue> mqAll, List<String> cidAll) {
//省略参数校验、当前消费者id是否存在的校验
//走到下面的代码, 说明参数校验通过
Collection<ClientNode> cidNodes = new ArrayList<ClientNode>();
for (String cid : cidAll) {
cidNodes.add(new ClientNode(cid));
}
final ConsistentHashRouter<ClientNode> router; //for building hash ring
if (customHashFunction != null) {
router = new ConsistentHashRouter<ClientNode>(cidNodes, virtualNodeCnt, customHashFunction);
} else {
router = new ConsistentHashRouter<ClientNode>(cidNodes, virtualNodeCnt);
}
List<MessageQueue> results = new ArrayList<MessageQueue>();
for (MessageQueue mq : mqAll) {
ClientNode clientNode = router.routeNode(mq.toString());
if (clientNode != null && currentCID.equals(clientNode.getKey())) {
results.add(mq);
}
}
return results;
}
关于一致性哈希算法的讲解,可以通过下面的连接进行了解
https://blog.csdn.net/xianghonglee/article/details/25718099
https://blog.csdn.net/sparkliang/article/details/5279393
https://akshatm.svbtle.com/consistent-hash-rings-theory-and-implementation
https://github.com/gholt/ring/blob/master/BASIC_HASH_RING.md
代码分析:
目前对一致性哈希的了解还是停留在表明上,暂时不进行分析,后面有深入了解再填充这部分内容