- 将Detection 2模型实例分割功能集成到大模型后门攻击实验中的完整指南
神经网络15044
算法python深度学习人工智能神经网络算法图像处理
将Detection2模型实例分割功能集成到大模型后门攻击实验中的完整指南前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景与意义在计算机视觉领域,实例分割是一项关键任务,它不仅能识别图像中的物体类别,还能精确地分割出每个实例的像素区域。FacebookAIResearch开发的Detectron2框架提供了高效的
- 论文:SOLO: Segmenting Objects by Locations
小仙女呀灬
图像分割计算机视觉机器学习人工智能
作者摘要我们提出了一种新的、非常简单的实例分割方法。与许多其他密集预测任务(例如语义分割)相比,任意数量的实例使实例分割更具挑战性。为了预测每个实例的掩码,主流方法要么遵循“先检测后分割”策略(例如,MaskR-CNN),要么先预测嵌入向量,然后使用聚类技术将像素分组到单个实例中。我们通过引入“实例类别”的概念,从全新的角度看待实例分割的任务,它根据实例的位置和大小为实例中的每个像素分配类别,从而
- 使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现
神经网络15044
算法python分类矩阵人工智能数据挖掘深度学习
使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景实例分割是计算机视觉领域的重要任务,它要求模型不仅要检测图像中的对象,还要精确地分割出每个对象的像素级掩码。近年来,基于Transformer的模型在实例分割任务上取得
- 超详细yolov8/11-segment实例分割全流程概述:配置环境、数据标注、训练、验证/预测、onnx部署(c++/python)详解
因为yolo的检测/分割/姿态/旋转/分类模型的环境配置、训练、推理预测等命令非常类似,这里不再详细叙述,主要参考**【YOLOv8/11-detect目标检测全流程教程】**,下面有相关链接,这里主要针对数据标注、格式转换、模型部署等不同细节部分;【YOLOv8/11-detect目标检测全流程教程】超详细yolo8/11-detect目标检测全流程概述:配置环境、数据标注、训练、验证/预测、o
- Python 人工智能Ai视觉模型 YOLOv8
GHY云端大师
pythonAI大模型视觉训练人工智能YOLO
YOLOv8简介:Python中的高效AI视觉模型YOLOv8是Ultralytics公司开发的最新目标检测模型,属于YOLO(YouOnlyLookOnce)系列的最新版本,以其高效和准确著称。核心特点高性能:在速度和精度之间取得了更好的平衡多功能:支持目标检测、实例分割和图像分类用户友好:简化了API设计,更易于使用可扩展性:支持从移动端到云端的多种部署场景主要改进更高的检测精度更快的推理速度
- 【推理加速】TensorRT C++ 部署YOLO11全系模型
gloomyfish
c++开发语言
YOLO11YOLO11C++推理YOLO11是Ultralytics最新发布的目标检测、实例分割、姿态评估的系列模型视觉轻量化框架,基于前代YOLO8版本进行了多项改进和优化。YOLO11在特征提取、效率和速度、准确性以及环境适应性方面都有显著提升,达到SOTA。TensorRTC++SDK最新版本的TensorRT10.x版本已经修改了推理的接口函数与查询输入输出层的函数,其中以YOLO11对
- Mask R-CNN 论文译读笔记
songyuc
cnn笔记人工智能
MaskR-CNN摘要 本文提出了一种概念简单、灵活且通用的目标实例分割框架。本文的方法能够高效检测图像中的目标,同时为每个实例生成高质量的分割掩码。该方法被称为MaskR-CNN,它对现有的FasterR-CNN进行扩展并行增加一个对象掩膜预测分支同时包含原有的边界框识别分支。MaskR-CNN训练简单,相比FasterR-CNN仅增加少量开销,推断速度可达5fps。此外,MaskRCNN易于
- MMDet实例分割loss_rpn_bbox为nan但其它loss正常的解决
MWHLS
pythonpythonpytorch深度学习人工智能
文章首发见博客:https://mwhls.top/4901.html。无图/格式错误/后续更新请见首发页。更多更新请到mwhls.top查看欢迎留言提问或批评建议,私信不回。昨天还以为这个月无活可整,没想到第二天就来事了,下个月还好久,留到下月发也不大好(º﹃º)。问题描述使用MMDetection训练实例分割,训练可执行,测试可执行,但loss_rpn_bbox为nan,loss_bbox却有
- python批量修改xml文件
爱上答复
xml
计算机视觉领域是当下比教热门的一个研究领域,包括目标检测,实例分割,语义分割等,不可避免会涉及到xml文件的修改,如果一两个文件的话,修改起来还算简答,但是实际情况中,远不止一个文件,且一个文件中也会包含多组属性。所以直接上代码,我习惯用pycharm编辑器来实现。importxml.dom.minidomforiinrange(0,100,5):path1="xxx"+str(i)+".xml"
- 28 - ShuffleAttention模块
Leo Chaw
深度学习算法实现深度学习计算机视觉pytorch人工智能
论文《SA-NET:SHUFFLEATTENTIONFORDEEPCONVOLUTIONALNEURALNETWORKS》1、作用SA模块主要用于增强深度卷积网络在处理图像分类、对象检测和实例分割等任务时的性能。它通过在神经网络中引入注意力机制,使网络能够更加关注于图像中的重要特征,同时抑制不相关的信息。2、机制1、特征分组:SA模块首先将输入特征图沿通道维度分成多个子特征组,这样每个子特征组可以
- 探索大规模实例分割新天地 —— LVIS API深度解析与应用推广
芮奕滢Kirby
探索大规模实例分割新天地——LVISAPI深度解析与应用推广去发现同类优质开源项目:https://gitcode.com/在机器视觉领域,数据集的丰富性和多样性是推动技术进步的关键。LVIS(LargeVocabularyInstanceSegmentation),以其独特的名字和深远的意义,在实例分割界掀起了一场革新风暴。LVIS,这个名字发音为“el-vis”,不仅仅是一个数据集,更是一套强
- 深度学习在建筑物提取中的应用综述
一瞬祈望
数据集深度学习人工智能
深度学习在建筑物提取中的应用综述目录深度学习在建筑物提取中的应用综述@[toc](目录)深度学习在建筑物提取中的应用综述一、建筑物提取简介二、深度学习方法分类1.语义分割(SemanticSegmentation)2.实例分割(InstanceSegmentation)3.边界感知分割(Boundary-awareSegmentation)4.多模态融合方法三、主流建筑物提取公开数据集及分析四、数
- 使用paddleX进行目标检测详解
狸不凡
机器学习深度学习神经网络
前言使用百度开源的paddleX工具,我们可以很容易快速训练出使用我们自己标注的数据的目标检测,图像分类,实例分割,语义分割的深度网络模型,本文,主要记录如何全流程使用pddleX来训练一个简单用于检测猫狗ppyolo_tiny模型。(一)数据准备这里的图片,我们直接在百度图片上搜索“猫狗”,随机下载10张图片,存到“JPEGImages文件夹”里。(二)使用labelme标注工具进行标注(1)l
- YOLO学习笔记 | YOLO11对象检测,实例分割,姿态评估的TensorRT部署c++
单北斗SLAMer
YOLO学习从零到1YOLO机器学习深度学习c++python
以下是YOLOv11在TensorRT上部署的步骤指南,涵盖对象检测、实例分割和姿态评估:1.模型导出与转换1.1导出ONNX模型importtorchfrommodels.experimentalimportattempt_loadmodel=attempt_load('yolov11s.pt',fuse=True)model.eval
- 从代码学习深度学习 - 语义分割和数据集 PyTorch版
飞雪白鹿€
#计算机视觉深度学习pytorch
文章目录前言什么是语义分割?图像分割和实例分割PascalVOC2012语义分割数据集PascalVOC2012语义分割数据集介绍基本信息语义分割部分特点数据格式评价指标应用价值数据集获取使用提示辅助工具代码(`utils_for_huitu.py`)读取数据预处理数据自定义语义分割数据集类读取数据集整合所有组件总结前言大家好!欢迎来到“从代码学习深度学习”系列。今天,我们将深入探讨计算机视觉中一
- 将多边形标注数据转为YOLO的txt格式
m0_55951222
YOLO
格式:一对一对的浮点数,表示多边形顶点的x和y坐标。坐标是归一化的,即值范围在[0,1]之间,分别表示相对于图像的宽度和高度。importjsonimportos'''任务:实例分割,labelme的json文件,转txt文件UltralyticsYOLOformat...'''#类别映射表,定义每个类别对应的IDlabel_to_class_id={"corn":0,#根据需要添加更多类别}#j
- AI图像分割总汇
点云SLAM
算法人工智能深度学习图像分割医学图像分割SOLOv系列注意力机制
AI图像分割模型是计算机视觉中的核心研究方向之一,广泛用于自动驾驶、医学影像、遥感图像分析等领域。下面是对图像分割模型的一些总汇与归类,按任务类型与模型架构演进进行系统整理。图像分割模型总览图像分割可以按任务类别划分为:一、按任务类型分类任务类型描述1.语义分割(SemanticSegmentation)为每个像素赋予一个语义标签(如人、车、背景),不区分实例。2.实例分割(InstanceSeg
- python-图片分割
Enougme
python开发语言
图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,例如分割出物体、前景背景或特定的部分。在Python中,常用的图片分割方法包括传统的图像处理技术(例如阈值分割、区域生长等)和深度学习技术(例如基于预训练模型的语义分割或实例分割)。以下是详细介绍和示例代码:1.基于传统图像处理的分割方法(1)使用固定阈值分割图片使用OpenCV的阈值处理来将前景和背景分离。适合简单的二值
- YOLOv12即插即用--CPAM
辛勤的程序猿
YOLOv12改进YOLO深度学习人工智能
1.模块介绍本文提出了一种新型基于注意尺度序列融合的YOLO框架,称为ASF-YOLO,该框架结合空间与尺度信息,实现了高效且精确的细胞实例分割。在YOLO分割框架的基础上,设计了尺度序列特征融合(SSFF)模块,用于增强多尺度信息提取能力;同时引入三重特征编码器(TPE)模块,以融合不同尺度下的特征图,从而丰富目标细节表达。此外,提出一种通道-位置注意机制(CPAM),用于集成SSFF与TPE模
- python加载训练好的模型并进行叶片实例分割预测
pk_xz123456
python算法python开发语言
要基于“GMT:GuidedMaskTransformerforLeafInstanceSegmentation”进行代码复现,可按照以下步骤利用Python实现:环境配置克隆仓库:在终端中使用gitclonehttps://github.com/vios-s/gmt-leaf-ins-seg.git命令,将项目代码克隆到本地。创建虚拟环境(可选但推荐):使用conda或venv创建虚拟环境,例如
- Carla Simulator自动驾驶模拟器 使用教程
zttsm
自动驾驶人工智能机器学习
前言:我想验证SLAM代码的效果,所以需要构建一个能提供自己和周围动车的位姿/轨迹和语义分割、bbx的真实值的复杂动态环境(最好能超过目前KITTI-Tracking序列的动态复杂度),所以要能设置CARLA世界中动车的密度、速度、与自己的相对距离、相对方向,和自己的速度;并能记录双目RGB和实例分割、轨迹、BBX。目录1.CARLA简介2.安装Carla客户端3.基础API的使用3.1clien
- 人工智能(11)——————计算机视觉
長安一片月
人工智能人工智能计算机视觉
目录声明正文1、简介2、步骤1)图像分类2)目标检测(目标定位)3)目标跟踪4)图像分割普通分割语义分割实例分割5)图像生成3、总结声明以下内容均来自B站吴恩达教授的视频以及西瓜书和众多前辈的学习成果总结,仅记录本人的大模型学习过程,如有侵权立马删除。言论仅代表自身理解,如有错误还请指正。正文1、简介我们先来看看百度百科里对计算机视觉的介绍:计算机视觉是一门研究如何使机器“看”的科学,更进一步的说
- 【论文阅读】实时全能分割模型
万里守约
论文阅读论文阅读图像分割图像处理计算机视觉
文章目录导言1、论文简介2、论文主要方法3、论文针对的问题4、论文创新点总结导言在最近的计算机视觉领域,针对实时多任务分割的需求日益增长,特别是在交互式分割、全景分割和视频实例分割等多种应用场景中。为了解决这些挑战,本文介绍了一种新方法——RMP-SAM(Real-TimeMulti-PurposeSegmentAnything),旨在实现实时的多功能分割。RMP-SAM结合了动态卷积与高效的模型
- Python 的 ultralytics 库详解
白.夜
人工智能
ultralytics是一个专注于计算机视觉任务的Python库,尤其以YOLO(YouOnlyLookOnce)系列模型为核心,提供了简单易用的接口,支持目标检测、实例分割、姿态估计等任务。本文将详细介绍ultralytics库的功能、安装方法、核心模块以及使用示例。1.ultralytics库简介ultralytics库由Ultralytics团队开发,旨在为YOLO系列模型提供高效、灵活且易
- EmbodiedSAM:在线实时3D实例分割,利用视觉基础模型实现高效场景理解
数据猎手小k
3D实例分割在线实时感知视觉基础模型(VFM)应用
2025-02-12,由清华大学和南洋理工大学的研究团队开发一种名为EmbodiedSAM(ESAM)的在线3D实例分割框架。该框架利用2D视觉基础模型辅助实时3D场景理解,解决了高质量3D数据稀缺的难题,为机器人导航、操作等任务提供了高效、准确的视觉感知能力。一、研究背景随着机器人技术和人工智能的发展,机器人在复杂环境中执行任务(如导航、操作和交互)的能力越来越依赖于对三维(3D)场景的实时、准
- YOLOv8n-seg.pt的使用(实例分割,训练自己制作的数据集)
再坚持一下!!!
YOLO
Ubuntu+python3一、YOLOV8源码下载参考:GitHub-ultralytics/ultralytics:NEW-YOLOv8inPyTorch>ONNX>OpenVINO>CoreML>TFLite二、数据集制作1.labelme下载:pip3installlabelme2.终端输入labelme,打开labelme。界面“打开目录”,打开图片目录images,进行多边形标注(右键
- A survey on instance segmentation: state of the art——论文笔记
栀子清茶
1024程序员节论文阅读计算机视觉人工智能笔记学习
摘要这篇论文综述了实例分割的研究进展,定义其为同时解决对象检测和语义分割的问题。论文讨论了实例分割的背景、面临的挑战、技术演变、常用数据集,并总结了相关领域的最新成果和未来研究方向。实例分割的发展从粗略的对象分类逐步演变为更精细的像素级别推理,广泛应用于自动驾驶、机器人等领域。论文为研究人员提供了对实例分割领域的全面了解和有价值的参考。一、简介第一部分“简介”主要介绍了实例分割的背景、定义和挑战。
- 将Labelme标注的数据做成COCO格式的数据集(实例分割的数据集)
一直开心
深度学习计算机视觉
这里说明一下:Labelme标注数据时候是用的多边形框,关于标注,可以看前面的博客文章下面制作的COCO数据集是用于实例分割的数据集。COCO格式数据集的制作1、labelme标注的数据转coco数据集AnacondaPrompt里F:\rockdata下的目录运行指令:这里需要注意是在activatelabelme后,pythonlabelme2coco.pyNoObejectNoObeject
- 实现一个超轻量级实例分割网络的思路
CV工程师小朱
深度学习笔记深度学习应用实例分割yolactpicodet深度学习
文章目录前言一、基本思路二、picodet三、yolact三、picodet+yolact总结前言在某些工业领域,由于成本问题算力有限,只能实时跑一些超轻量级网络,拿目标检测来说,例如yolo-fast,pp-picodet这些。如果要跑实例分割,目前好像没有什么超轻量级的网络。所以就有想法如何实现一个超轻量级实例分割网络。一、基本思路基于超轻量级目标检测pp-picodet,增加一个掩膜分支。参
- YOLOv8制作自己的实例分割数据集保姆级教程(包含json转txt)
Sir小珂
YOLOpython深度学习人工智能
1.数据准备首先对原始数据集进行整理,将标注好的图像和标签分别放在两个文件夹中,同时额外新建两个文件夹,用于存放转换完的标签与划分后的数据集。1.1将json格式文件转换为txt格式新建json2txt.py文件,将代码中的文件路径修改为自己的路径。❗❗❗代码中第43行的classes中存放的是自己数据集的分类标签,记得修改成自己的。importjsonimportosfromtqdmimport
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla