- PaddleOCR 快速开始
张欣-男
PaddlePaddlePaddleOCROCR
1.安装1.1安装PaddlePaddle#GPUcudapipinstallpaddlepaddle-gpu#CPUpipinstallpaddlepaddle1.2安装PaddleOCRwhl包pipinstallpaddleocr2.便捷使用2.1命令行使用2.1.1中英文模型检测+方向分类器+识别全流程:–use_angle_clstrue设置使用方向分类器识别180度旋转文字,–use_
- 「源力觉醒 创作者计划」_以FastDeploy为例部署ERNIE-4.5-21B大模型全流程实践
cooldream2009
大模型基础AI技术文心大模型FastDeploy
目录前言1环境准备与依赖安装1.1硬件要求1.2Python环境与pip升级2下载ERNIE-4.5模型权重2.1安装HuggingFaceCLI工具2.2设置国内镜像加速(可选)2.3下载模型文件3安装FastDeploy与Paddle推理引擎3.1安装PaddlePaddle-GPU版本3.2安装FastDeploy-GPU4启动ERNIE-4.5本地服务4.1启动OpenAI兼容API服务4
- PaddleOCR 3.0全面解析:五大核心能力与实战应用指南
经优英
PaddleOCR3.0全面解析:五大核心能力与实战应用指南PaddleOCRAwesomemultilingualOCRtoolkitsbasedonPaddlePaddle(practicalultralightweightOCRsystem,support80+languagesrecognition,providedataannotationandsynthesistools,suppor
- python --飞浆离线ocr使用/paddleocr
依赖#python==3.7.3paddleocr==2.7.0.2paddlepaddle==2.5.2loguru==0.7.3frompaddleocrimportPaddleOCRimportcv2importnumpyasnpif__name__=='__main__':OCR=PaddleOCR(use_doc_orientation_classify=False,#检测文档方向use
- paddleOCR模型的安装和使用
九日卯贝
paddleocr
paddleOCR仓库:https://github.com/PaddlePaddle/PaddleOCR?tab=readme-ov-file文档:https://paddlepaddle.github.io/PaddleOCR/main/quick_start.html#2-paddleocr环境安装python-mpipinstallpaddlepaddle-gpu==3.0.0b1-iht
- paddlepaddle测试安装_python3.7中安装paddleocr及paddlepaddle包的多种方法
瓦啦
升级pippip版本必须升级到20.0.4版本才能应用;方法一、在pycharm中对pip进行升级;方法二、通过命令进行升级python3.7-mpipinstall--upgradepip下载paddleOCR下载链接:https://github.com/PaddlePaddle/PaddleOCR打开paddleOCR文件夹中requirements.txt文件,更改文件中opencv-py
- ali docker部属paddleocr
大熊程序猿
ASP.NETCoredocker容器运维
dockerpullregistry.baidubce.com/paddlepaddle/paddle:2.6.0nano/root/projects/paddleocr_server.py========================fromflaskimportFlask,requestfromwerkzeug.utilsimportsecure_filenameimportuuidfrom
- 百度飞桨(PaddlePaddle)案例分享:基于 PaddleOCR 的图像文字提取系统
univerbright
百度paddlepaddle人工智能paddleocr图像文字提取
一、案例背景在实际教学、办公及政务系统中,纸质材料(如手写作文、表格、试卷等)仍广泛存在。为提升信息处理效率,采用OCR(OpticalCharacterRecognition)技术将图像中的文字提取为可编辑文本已成为刚需。本项目基于开源深度学习库PaddleOCR,构建了一个轻量级的图像文字识别工具,能够自动识别图像中的中文文本,并提供置信度评估和可视化支持。该工具特别适用于作业扫描图像中的内容
- 视觉模型部署实践:低算力平台RV1106上高效部署paddlepaddle 的PicoDet目标检测模型的技术实践
位东风
视觉模型部署实践paddlepaddle目标检测人工智能iot物联网嵌入式硬件
在资源受限的嵌入式设备上实现高精度、低延迟的目标检测,是当前智能摄像头、边缘计算等应用中的关键挑战。本文以Rockchip的RV1106嵌入式平台为例,结合百度开源的轻量级检测模型PicoDet,探讨如何通过模型优化与硬件加速,在有限的计算资源下实现高效的实时目标检测。目前该模型测试可以达到25fps左右一、背景介绍1.1RV1106硬件特性主频:1.2GHzArmCortex-A55CPU内存:
- 使用PaddleOCR读取pdf内容,输出txt文本
只有左边一个小酒窝
Paddlepdfpaddle人工智能
使用PaddleOCR读取PDF内容并输出为TXT文本,可以通过以下步骤实现。PaddleOCR是一个基于PaddlePaddle的OCR工具,支持多种语言的文本识别。一、安装依赖确保已安装PaddleOCR和相关的依赖库。以下是代码中涉及的依赖库及其功能说明:os所属语言:Python内置标准库功能:提供操作系统相关功能,如文件路径操作、目录管理等。示例用途:在处理文件时获取路径、创建目录等。f
- 如何制作属于自己的图片OCR功能
hit56笔记
机器学习
文章目录一、百度的PaddlePaddle二、一个开源软件三、谷歌的OCR实践方案1.安装软件包2.安装语言包3.运行代码三、facebook的抠图模型四、参考文献经过本人的多次实践探索,已上线至我的网站:www.hit56.com,可以在上面直接体验图片OCR功能一、百度的PaddlePaddlehttps://github.com/PaddlePaddle/PaddleOCR二、一个开源软件h
- 百度飞桨PaddleOCR 3.0开源发布 OCR精度跃升13%
吴脑的键客
人工智能百度paddlepaddleocr
百度飞桨PaddleOCR3.0开源发布2025年5月20日,百度飞桨团队正式发布了PaddleOCR3.0版本,并将其开源。这一新版本在文字识别精度、多语种支持、手写体识别以及高精度文档解析等方面取得了显著进展,进一步提升了PaddleOCR在OCR领域的技术实力和应用价值。开源地址:https://github.com/PaddlePaddle/PaddleOCR技术亮点全场景文字识别模型PP
- Python、PyTorch、TensorFlow和飞桨(PaddlePaddle)的核心介绍及对比
非小号
AIpythonpytorchtensorflow
以下是Python、PyTorch、TensorFlow和飞桨(PaddlePaddle)的核心介绍及对比,帮助你快速理解它们的定位与适用场景:一、Python:AI开发的基石语言定位:通用高级编程语言,以简洁语法和丰富库生态著称。核心优势:易学易用:代码可读性强,适合快速原型开发。生态丰富:拥有NumPy(科学计算)、Pandas(数据处理)、Matplotlib(可视化)等基础库,以及Scik
- 飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)
非小号
AIpaddlepaddle机器学习人工智能
以下是飞桨(PaddlePaddle)在机器学习全流程(数据采集、处理、标注、建模、分析、优化)中常用的模型、函数及工具链,结合其生态特点分类说明:一、数据采集与标注1.数据采集工具PaddleX(图像/视频场景)功能:支持图像分类、目标检测、语义分割任务的数据标注,集成标注工具(如矩形框、多边形标注)。官网工具:PaddleX数据标注工具用法:通过图形化界面或命令行启动标注工具,输出标准VOC/
- 通过paddlehub简单几行代码实现OCR识别
bobfreedman
AIocr
一、前置条件1、ubuntu系统2、python3、pip已经安装完毕3、paddlepaddle、paddlehub、cv2、gradio、matplotlib安装完毕二、实现代码ocr.pyimportpaddlehubashubimportmatplotlib.pyplotaspltimportmatplotlib.imageasmpimgimportgradioasgrimportcv2o
- PaddleHub一键OCR中文识别
jiabiao1602
ocr
PaddleHub是百度飞桨(PaddlePaddle)深度学习框架下的一个预训练模型应用工具,它为用户提供了丰富的高质量预训练模型和便捷的开发方式。这里我们仅介绍其在OCR中文识别方面的应用。一、PaddleHub介绍先让文心一言给我们介绍PaddleHub,以下是文心一言的答案。PaddleHub是百度飞桨(PaddlePaddle)深度学习框架下的一个预训练模型应用工具,它为用户提供了丰富的
- 搭建本地OCR服务(Paddlepaddle)
Johannisberger_
numpypipconda
1.先安装conda软件并创建conda虚拟环境指定好python版本下载conda:https://www.anaconda.com/download/安装并配置好环境变量创建虚拟环境:condacreate--nameocrpython=3.82.安装paddlepaddle下载paddlepaddlehttps://www.paddlepaddle.org.cn/根据设备情况安装cpu版本/
- PaddleHub识别中文人名实战记录及心得
Jason-Lai
NLP人工智能python自然语言处理
一,简介与特性便捷地获取PaddlePaddle生态下的预训练模型,完成模型的管理和一键预测。配合使用Fine-tuneAPI,可以基于大规模预训练模型快速完成迁移学习,让预训练模型能更好地服务于用户特定场景的应用,PaddleHub旨在为开发者提供丰富的、高质量的、直接可用的预训练模型【模型种类丰富】:涵盖大模型、CV、NLP、Audio、Video、工业应用主流六大品类的400+预训练模型,全
- 2025转行指南:Java开发工程师转AI工程师,附全网最详细的大模型学习路线
AI小白熊
java人工智能学习大模型程序员ai开发语言
关键要点研究表明,Java开发工程师转AI工程师需要学习数学、Python编程、机器学习和深度学习等技能。证据显示,掌握TensorFlow、PyTorch等框架和云部署技术(如Aliyun、AWS)也很重要。学习资源包括Coursera的免费课程、DiveintoDeepLearning书和国内平台如PaddlePaddle。技能和学习资料概述所需技能要从Java开发工程师成功转型为AI工程师,
- paddle ocr本地化部署进行文字识别
隐形喷火龙
Pythonpaddleocr
一、Paddle简介1.基本概念Paddle(全称PaddlePaddle,飞桨)是百度开发的开源深度学习平台,也是中国首个自主研发、功能丰富、技术领先的工业级深度学习平台。它覆盖了深度学习从数据准备、模型训练、模型部署到预测的全流程,旨在帮助开发者快速实现AI应用。2.核心特点全场景覆盖:支持云端、边缘端、移动端等多硬件环境,适配CPU、GPU、FPGA等多种芯片。易用性与高效性:提供简洁的AP
- PaddlePaddle 和PyTorch选择与对比互斥
不懂球的小胖
aipython大模型paddlepaddlepytorch人工智能
你遇到的错误信息如下:RuntimeError:(PreconditionNotMet)Tensor'sdimensionisoutofbound.Tensor'sdimensionmustbeequalorlessthanthesizeofitsmemory.ButreceivedTensor'sdimensionis8,memory'ssizeis0.[Hint:Expectednumel()
- 使用paddlepaddle框架构建ViT用于CIFAR10图像分类
sherlockjjobs
深度学习Pythonpython深度学习图像分类
使用paddlepaddle框架构建ViT用于CIFAR10图像分类硬件环境:GPU(1*NVIDIAT4)运行时间:一个epoch大概一分钟importpaddleimporttimeimportpaddle.nnasnnimportpaddle.nn.functionalasFimportpaddle.vision.transformsastransformsfrompaddle.ioimpo
- Python基础paddlepaddle
愚昧之山绝望之谷开悟之坡
PaddlePaddleNLP基础知识python
print(math.ceil(4.1))#返回数字的上入整数print(math.floor(4.9))#返回数字的下舍整数字符串单引号、双引号、三引号print(‘HelloWorld!’)print(“HelloWorld!”)转义字符\print(“The\tisatab”)print(‘I’mgoingtothemovies’)TheisatabI’mgoingtothemovies三引
- PaddlePaddle最简单的例子:利用python api调用paddle实现模型加载与预测
少安的砖厂
PaddlePaddle开发
调用fluid的python接口:importpaddle.fluidasfluid图片操作:fromPILimportImage矩阵操作:importnumpyasnpexe=fluid.Executor(fluid.CPUPlace())//设置model的地址,在model_path字符型变量中保存[inference_program,feed_target_names,fetch_targ
- 深度学习框架:PaddlePaddle基础
白拾ShiroX
#深度学习网络python机器学习人工智能深度学习
介于CSDN的排版问题,这里附个人博客连接。https://discover304.top/2021/12/02/2021q4/107-4-dl-pdpd-base/说明本页面无手机端适配,强制缩放阅读。使用纯html格式,保存教学用ppt,添加了部分个人笔记。目录工作正常,可以跳转。b{color:rgba(0,0,0,0.75)}PaddlePaddle概述PaddlePaddle概述Padd
- AI同声传译基于PaddlePaddle框架的开源方案介绍
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介随着人工智能技术的不断发展,越来越多的人将注意力集中在语音识别、机器翻译等领域,而这些技术虽然有其优点,但也面临着一些挑战。其中之一就是长文本翻译、多语言语音合成的难题,特别是在大规模数据和大型模型的情况下。为了解决这个问题,业界提出了许多有效的技术措施,如同声传译、分词对齐、强制教学等。在最近几年里,随着深度学习框架的火爆,出现了一系列基于神经网络的开源技术方
- 转行指南:Java开发工程师转AI工程师,附大模型学习路线
和老莫一起学AI
java人工智能学习langchain语言模型ai大模型
关键要点研究表明,Java开发工程师转AI工程师需要学习数学、Python编程、机器学习和深度学习等技能。证据显示,掌握TensorFlow、PyTorch等框架和云部署技术(如Aliyun、AWS)也很重要。学习资源包括Coursera的免费课程、DiveintoDeepLearning书和国内平台如PaddlePaddle。技能和学习资料概述所需技能要从Java开发工程师成功转型为AI工程师,
- python批量去除图片文字水印
数据服务生
python开发语言
#!/usr/bin/envpython#-*-coding:utf-8-*-#需要安装的库#pipinstallpaddlepaddle-ihttps://mirrors.aliyun.com/pypi/simple/#pipinstallpaddleocr-ihttps://mirrors.aliyun.com/pypi/simple/#pipinstallcv2-ihttps://mirro
- 探索高效目标检测新境界:PyTorch版PP-YOLOE全面解析与应用指南
乌芬维Maisie
探索高效目标检测新境界:PyTorch版PP-YOLOE全面解析与应用指南PPYOLOE_pytorch项目地址:https://gitcode.com/gh_mirrors/pp/PPYOLOE_pytorch在目标检测的浩瀚星空里,有一颗璀璨的新星——PP-YOLOE。这个基于Pytorch实现的项目,不仅承袭了PaddlePaddle版PP-YOLOE和Megvii的YOLOX的精粹,还实现
- 深度学习篇---模型GPU训练
Ronin-Lotus
图像处理篇深度学习篇上位机知识篇深度学习人工智能pythonopenmppaddlepaddlepytorch并行
文章目录前言一、在PaddlePaddle框架下使用GPU训练模型步骤1:确保环境准备就绪硬件软件步骤2:确认GPU可用步骤3:设置使用的GPU设备步骤4:定义模型步骤5:将模型移到GPU步骤6:准备数据并移到GPU步骤7:定义损失函数和优化器步骤8:训练模型二、在PyTorch框架下使用GPU训练模型步骤1:确保环境准备就绪硬件软件步骤2:确认GPU可用步骤3:设置使用的GPU设备步骤4:定义模
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_