- Python 大数据分析(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/5058e6970bd2a8d818ecc1f7f8fef74a译者:飞龙协议:CCBY-NC-SA4.0第六章:第五章处理缺失值和相关性分析学习目标到本章结束时,你将能够:使用PySpark检测和处理数据中的缺失值描述变量之间的相关性计算PySpark中两个或多个变量之间的相关性使用PySpark创建相关矩阵在本章中,我们将使用Iris数据集处理
- Hive 事务表(ACID)问题梳理
文章目录问题描述分析原因什么是事务表概念事务表和普通内部表的区别相关配置事务表的适用场景注意事项设计原理与实现文件管理格式参考博客问题描述工作中需要使用pyspark读取Hive中的数据,但是发现可以获取metastore,外部表的数据可以读取,内部表数据有些表报错信息是:AnalysisException:org.apache.hadoop.hive.ql.metadata.HiveExcept
- Python与大数据:Spark和PySpark实战教程
天天进步2015
python大数据pythonspark
引言在大数据时代,数据处理和分析能力成为核心竞争力。ApacheSpark作为新一代大数据计算引擎,以其高性能、易用性和强大的生态系统,成为数据工程师和分析师的首选工具。而PySpark作为Spark的Python接口,让Python开发者能够轻松驾驭大规模数据处理。本教程将带你系统了解Spark与PySpark的核心原理、环境搭建、典型应用场景及实战案例,助你快速上手大数据分析。目录Spark简
- 基于pyspark的北京历史天气数据分析及可视化_离线
大数据CLUB
spark数据分析可视化数据分析数据挖掘hadoop大数据spark
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据存储(mysql)->后端(flask)->前端(
- 基于pyspark的北京历史天气数据分析及可视化_实时
大数据CLUB
spark数据分析可视化数据分析数据挖掘sparkhadoop大数据
基于pyspark的北京历史天气数据分析及可视化项目概况[]点这里,查看所有项目[]数据类型北京历史天气数据开发环境centos7软件版本python3.8.18、hadoop3.2.0、spark3.1.2、mysql5.7.38、scala2.12.18、jdk8、kafka2.8.2开发语言python开发流程数据上传(hdfs)->数据分析(spark)->数据写kafka(python)
- Pyspark中的int
闯闯桑
pythonsparkpandas大数据
在PySpark中,整数类型(int)与Python或Pandas中的int有所不同,因为它基于SparkSQL的数据类型系统。以下是PySpark中整数类型的详细说明:1.PySpark的整数类型PySpark主要使用IntegerType(32位)和LongType(64位)表示整数,对应SQL中的INT和BIGINT:PySpark类型SQL类型位数取值范围占用存储IntegerTypeIN
- pyspark底层浅析
lo_single
Sparksparkpython
pyspark底层浅析pyspark简介pyspark是Spark官方提供的API接口,同时pyspark也是Spark中的一个程序。在terminal中输入pyspark指令,可以打开python的shell,同时其中默认初始化了SparkConf和SparkContext在编写Spark应用的.py文件时,可以通过importpyspark引入该模块,并通过SparkConf对Spark的启动
- PySpark 使用pyarrow指定版本
SLUMBER_PARTY_
pyspark
背景说明在PySpark3.1.3环境中,当需要使用与集群环境不同版本的PyArrow(如1.0.0版本)时,可以通过以下方法实现,而无需更改集群环境配置完整操作说明去pyarrow·PyPI下载对应版本的whl文件后缀whl直接改成zip解压后有两个文件夹,分别是pyarrow和pyarrow-1.0.0.dist-info直接把那两个文件夹打包成pyarrow.zip因为pyarrow里不是单
- Spark入门指南:大数据处理的第一个Hello World程序
AI天才研究院
ChatGPTAI大模型应用入门实战与进阶spark大数据分布式ai
Spark入门指南:大数据处理的第一个HelloWorld程序关键词:Spark、大数据处理、RDD、WordCount、PySpark、分布式计算、HelloWorld程序摘要:本文以经典的WordCount程序为切入点,系统讲解ApacheSpark的核心概念、开发流程与实战技巧。通过从环境搭建到代码实现的全流程解析,帮助大数据初学者快速掌握Spark的基础操作,理解分布式计算的核心逻辑。文章
- pyspark==windows单机搭建
一个java开发
数据分析spark
下载安装JDK17,配置JAVA_HOME下载安装hadoop-3.3.5并完整替换bin目录,配置HADOOP_HOMEIndexof/hadoop/common/hadoop-3.3.5GitHub-cdarlint/winutils:winutils.exehadoop.dllandhdfs.dllbinariesforhadoopwindows下载spark配置SPARK_HOME安装py
- 大数据领域的数据工程:从理论到实践
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大数据ai
大数据领域的数据工程:从理论到实践关键词:数据工程、大数据处理、ETL/ELT、数据湖、数据仓库、数据治理、云计算摘要:本文系统解析大数据领域的数据工程体系,从理论架构到实战落地展开深度探讨。首先构建数据工程核心概念框架,解析数据集成、存储、处理、治理的技术原理;其次通过Python和PySpark代码实现数据清洗、分布式处理等关键算法;结合真实项目案例演示数据管道搭建与优化;最后分析金融、电商等
- pyspark依赖环境设置
pypspark异常py49-protocol.Py433avaError:Anerroroccurredwhilecalling0117.sql.org.apache.spark.SparkException:Jobabortedduetostagefailure:Task®instage0.0failed4times,mostrecentfailure:Losttask0.3instage0.
- 使用 PySpark 从 Kafka 读取数据流并处理为表
Bug Spray
kafkalinq分布式
使用PySpark从Kafka读取数据流并处理为表下面是一个完整的指南,展示如何通过PySpark从Kafka消费数据流,并将其处理为可以执行SQL查询的表。1.环境准备确保已安装:ApacheSpark(包含SparkSQL和SparkStreaming)KafkaPySpark对应的Kafka连接器(通常已包含在Spark发行版中)2.完整代码示例frompyspark.sqlimportSp
- Hugging Face + Spark:打造高效的 NLP 大数据处理引擎(一)
在自然语言处理(NLP)领域,HuggingFace是不可或缺的处理库,而Spark则是大数据处理的必备工具。将两者的优势结合起来,可以实现高效的NLP大数据处理。以下是结合HuggingFace和Spark的两种方法,基于Spark&PySpark3.3.1版本进行探索。方法一:升级Spark版本至3.4及以上如果你愿意升级Spark版本到3.4或更高版本,那么结合HuggingFace和Spa
- linux下载pyspark并修改默认python版本
yishan_3
chrome前端
使用deadsnakesPPA(适用于旧版Ubuntu)如果官方仓库没有Python3.8,可通过第三方PPA安装。步骤1:添加PPA仓库bash复制下载sudoadd-apt-repositoryppa:deadsnakes/ppasudoaptupdate步骤2:安装Python3.8bash复制下载sudoaptinstallpython3.8设置Python3.8为默认版本(可选)如果需要
- 关于Spark Shell的使用
2301_78557870
spark大数据分布式
Spark带有交互式的Shell,可在SparkShell中直接编写Spark任务,然后提交到集群与分布式数据进行交互,并且可以立即查看输出结果。SparkShell提供了一种学习SparkAPI的简单方式,可以使用Scala或Python语言进行程序的编写。一、SparkShell简介SparkShell是Spark提供的交互式命令行工具,支持Scala(默认)和Python(PySparkSh
- RDD的自定义分区器-案例
依年南台
大数据
以下是一个更具体的RDD自定义分区器案例,展示如何根据业务需求实现自定义分区逻辑。案例:按用户地区进行数据分区假设我们有一个电商交易数据集,包含user_id(用户ID)和region(地区)字段。我们希望根据用户所在地区将数据分区,以便后续对每个地区的数据进行独立分析。实现步骤定义地区到分区的映射规则实现自定义分区器应用分区器并验证结果代码实现python运行frompysparkimportS
- 使用Pyspark读取CSV文件并将数据写入数据库(大数据)
雨中徜徉的思绪漫溢
数据库大数据
使用Pyspark读取CSV文件并将数据写入数据库(大数据)近年来,随着大数据技术的快速发展,大数据处理和分析已经成为许多企业和组织的重要任务之一。Pyspark作为ApacheSpark的PythonAPI,为我们提供了强大的工具来处理和分析大规模数据集。在本文中,我们将学习如何使用Pyspark读取CSV文件,并将数据写入数据库。首先,我们需要安装和配置Pyspark。请确保你已经安装了Jav
- Spark安装
姬激薄
spark
一、本地环境安装(单机模式)适合开发和测试,支持Windows、Linux、macOS。1.前置条件Java:Java8或更高版本(建议OpenJDK11+)。bash#检查Java版本java-versionPython(可选):PySpark需要Python3.6+。Scala(可选):若使用ScalaAPI,需安装Scala2.12/2.13。2.下载与安装下载Spark:从ApacheSp
- 【小贪】程序员必备:Shell、Git、Vim常用命令
贪钱算法还我头发
小小宝典gitvim编辑器shellsshlinux
近期致力于总结科研或者工作中用到的主要技术栈,从技术原理到常用语法,这次查缺补漏当作我的小百科。主要技术包括:✅数据库常用:MySQL,HiveSQL,SparkSQL✅大数据处理常用:Pyspark,Pandas⚪图像处理常用:OpenCV,matplotlib⚪机器学习常用:SciPy,Sklearn⚪深度学习常用:Pytorch,numpy⚪常用数据结构语法糖:itertools,colle
- pyspark on yarn 配置
强强0007
pysparkhadoop大数据分布式
1yarn模式出错pysparkonyarn在pycharm上执行出现以下问题:解决方案:在程序最前面添加如下程序importosos.environ["HADOOP_CONF_DIR"]="/opt/module/hadoop-3.1.3/etc/hadoop"2yarn模式配置2.1SparkSessionfrompyspark.sqlimportSparkSessionimportos
- RDD有哪几种创建方式
痕517
开发语言
RDD(弹性分布式数据集)有以下几种常见的创建方式:###从集合创建通过`parallelize()`方法将本地集合转换为RDD。这种方式适合在测试或处理小规模数据时使用,它能将本地的Python列表、Java数组等集合数据并行化到集群上。-**Python示例**:```pythonfrompysparkimportSparkContext#创建SparkContext对象sc=SparkCon
- scala连接mongodb_Spark教程(二)Spark连接MongoDB
weixin_39688035
scala连接mongodb
如何导入数据数据可能有各种格式,虽然常见的是HDFS,但是因为在Python爬虫中数据库用的比较多的是MongoDB,所以这里会重点说说如何用spark导入MongoDB中的数据。当然,首先你需要在自己电脑上安装spark环境,简单说下,在这里下载spark,同时需要配置好JAVA,Scala环境。这里建议使用Jupyternotebook,会比较方便,在环境变量中这样设置PYSPARK_DRIV
- 大数据毕业设计PySpark+Hadoop航班延误预测系统 航班可视化
QQ21503882
javaweb大数据课程设计hadoop
1.选题背景和意义(1)选题背景在旅行规划中,机票价格一直是旅客关注的重点。机票价格的波动不仅受季节、航线、航空公司等因素的影响,还受到市场供求关系、经济形势等因素的影响。因此,通过对机票价格进行预测分析,可以帮助旅客选择更合适的出行时间和机票购买策略,从而节省旅行成本。(2)意义提高乘客购票决策:基于Hadoop的飞机票价格预测能够提供乘客准确的价格预测信息,帮助他们选择合适的购票时间和最优的价
- Spark应用部署模式实例
qrh_yogurt
spark大数据分布式
Local模式新启动一个终端SparkSubmit#pyspark命令启动的进程,实际上就是启动了一个Spark应用程序SparkStandalone模式讲解:6321SecondaryNameNode#hadoop中HDFS第二数据存储节点,负责定期合并fsimage和editslog文件7475Jps6132DataNode#hadoop中HDFS的数据存储节点,负责存储实际的数据块,并响应来
- spark graphx自用学习笔记及pyspark项目实战(基于GraphX的航班飞行网图分析)
GDUT-orzzzzzz
学习笔记sparkpython大数据
这里写自定义目录标题0.前言1.概念1.1图计算的优势1.2图存储格式1.3GraphX存储模式1.4普通概念2.图的构建(待补充)2.1构建图的方法2.2构建图的过程3.图的操作4.算法5.实战5.1项目要求5.2环境5.3安装5.4代码5.5最终结果参考链接0.前言本篇博客自用,部分内容只包含概念,并且博主本身有一定spark和图论基础,部分模糊的地方,可自行查询。1.概念1.1图计算的优势基
- 在Azure Databricks中实现缓慢变化维度(SCD)的三种类型
weixin_30777913
数据仓库pythonsparkazure云计算
在AzureDatabricks中使用PySpark实现缓慢变化维度(SCD)的三种核心类型,需结合SparkSQL和DataFrameAPI的特性,并利用DeltaLake的事务支持。以下是具体设计与实现步骤,以及测试用例:通过以下步骤,可在AzureDatabricks中高效实现SCD逻辑,确保数据历史可追溯且符合业务需求。类型1:覆盖旧值(OverwriteOldValue)设计要点直接更新
- 跨领域大数据抓取与融合:Python爬虫实战指南
Python爬虫项目
2025年爬虫实战项目大数据python爬虫人工智能开发语言easyui
目录引言跨领域大数据抓取与融合的背景与意义技术选型与工具介绍Python爬虫框架:Scrapy、BeautifulSoup、Selenium数据处理与存储:Pandas、NumPy、MongoDB数据融合与分析:PySpark、TensorFlow实战项目:跨领域数据抓取与融合项目概述数据抓取抓取电商数据抓取社交媒体数据抓取新闻数据数据清洗与预处理数据融合与分析代码实现与详细解析电商数据抓取代码社
- PySpark数据透视表操作指南
闯闯桑
大数据sparkpython
在PySpark中,可以使用pivot()方法实现类似Excel数据透视表的功能。以下是详细操作步骤和示例:1.基本语法df.groupBy([行维度列])\.pivot([列维度列])\.agg([聚合函数])\.fillna(0)#可选,填充空值2.示例数据假设有以下DataFrame(sales_df):+-------+----------+------+-------+|region|p
- 在AWS Glue中实现缓慢变化维度(SCD)的三种类型
weixin_30777913
awsetlsql开发语言数据仓库
根据缓慢变化维度(SCD)的三种核心类型(类型1、类型2、类型3),以下是基于AWSGlue的实现设计、步骤及测试用例:一、AWSGlue实现SCD的设计与步骤1.SCD类型1(覆盖旧值)设计目标:直接更新目标表中的记录,不保留历史数据。技术选型:使用AWSGlueETL作业(PySpark)目标存储:S3(Parquet格式)或AmazonRedshift数据比对方式:基于业务键(如custom
- Linux的Initrd机制
被触发
linux
Linux 的 initrd 技术是一个非常普遍使用的机制,linux2.6 内核的 initrd 的文件格式由原来的文件系统镜像文件转变成了 cpio 格式,变化不仅反映在文件格式上, linux 内核对这两种格式的 initrd 的处理有着截然的不同。本文首先介绍了什么是 initrd 技术,然后分别介绍了 Linux2.4 内核和 2.6 内核的 initrd 的处理流程。最后通过对 Lin
- maven本地仓库路径修改
bitcarter
maven
默认maven本地仓库路径:C:\Users\Administrator\.m2
修改maven本地仓库路径方法:
1.打开E:\maven\apache-maven-2.2.1\conf\settings.xml
2.找到
 
- XSD和XML中的命名空间
darrenzhu
xmlxsdschemanamespace命名空间
http://www.360doc.com/content/12/0418/10/9437165_204585479.shtml
http://blog.csdn.net/wanghuan203/article/details/9203621
http://blog.csdn.net/wanghuan203/article/details/9204337
http://www.cn
- Java 求素数运算
周凡杨
java算法素数
网络上对求素数之解数不胜数,我在此总结归纳一下,同时对一些编码,加以改进,效率有成倍热提高。
第一种:
原理: 6N(+-)1法 任何一个自然数,总可以表示成为如下的形式之一: 6N,6N+1,6N+2,6N+3,6N+4,6N+5 (N=0,1,2,…)
- java 单例模式
g21121
java
想必单例模式大家都不会陌生,有如下两种方式来实现单例模式:
class Singleton {
private static Singleton instance=new Singleton();
private Singleton(){}
static Singleton getInstance() {
return instance;
}
- Linux下Mysql源码安装
510888780
mysql
1.假设已经有mysql-5.6.23-linux-glibc2.5-x86_64.tar.gz
(1)创建mysql的安装目录及数据库存放目录
解压缩下载的源码包,目录结构,特殊指定的目录除外:
- 32位和64位操作系统
墙头上一根草
32位和64位操作系统
32位和64位操作系统是指:CPU一次处理数据的能力是32位还是64位。现在市场上的CPU一般都是64位的,但是这些CPU并不是真正意义上的64 位CPU,里面依然保留了大部分32位的技术,只是进行了部分64位的改进。32位和64位的区别还涉及了内存的寻址方面,32位系统的最大寻址空间是2 的32次方= 4294967296(bit)= 4(GB)左右,而64位系统的最大寻址空间的寻址空间则达到了
- 我的spring学习笔记10-轻量级_Spring框架
aijuans
Spring 3
一、问题提问:
→ 请简单介绍一下什么是轻量级?
轻量级(Leightweight)是相对于一些重量级的容器来说的,比如Spring的核心是一个轻量级的容器,Spring的核心包在文件容量上只有不到1M大小,使用Spring核心包所需要的资源也是很少的,您甚至可以在小型设备中使用Spring。
 
- mongodb 环境搭建及简单CURD
antlove
WebInstallcurdNoSQLmongo
一 搭建mongodb环境
1. 在mongo官网下载mongodb
2. 在本地创建目录 "D:\Program Files\mongodb-win32-i386-2.6.4\data\db"
3. 运行mongodb服务 [mongod.exe --dbpath "D:\Program Files\mongodb-win32-i386-2.6.4\data\
- 数据字典和动态视图
百合不是茶
oracle数据字典动态视图系统和对象权限
数据字典(data dictionary)是 Oracle 数据库的一个重要组成部分,这是一组用于记录数据库信息的只读(read-only)表。随着数据库的启动而启动,数据库关闭时数据字典也关闭 数据字典中包含
数据库中所有方案对象(schema object)的定义(包括表,视图,索引,簇,同义词,序列,过程,函数,包,触发器等等)
数据库为一
- 多线程编程一般规则
bijian1013
javathread多线程java多线程
如果两个工两个以上的线程都修改一个对象,那么把执行修改的方法定义为被同步的,如果对象更新影响到只读方法,那么只读方法也要定义成同步的。
不要滥用同步。如果在一个对象内的不同的方法访问的不是同一个数据,就不要将方法设置为synchronized的。
- 将文件或目录拷贝到另一个Linux系统的命令scp
bijian1013
linuxunixscp
一.功能说明 scp就是security copy,用于将文件或者目录从一个Linux系统拷贝到另一个Linux系统下。scp传输数据用的是SSH协议,保证了数据传输的安全,其格式如下: scp 远程用户名@IP地址:文件的绝对路径
- 【持久化框架MyBatis3五】MyBatis3一对多关联查询
bit1129
Mybatis3
以教员和课程为例介绍一对多关联关系,在这里认为一个教员可以叫多门课程,而一门课程只有1个教员教,这种关系在实际中不太常见,通过教员和课程是多对多的关系。
示例数据:
地址表:
CREATE TABLE ADDRESSES
(
ADDR_ID INT(11) NOT NULL AUTO_INCREMENT,
STREET VAR
- cookie状态判断引发的查找问题
bitcarter
formcgi
先说一下我们的业务背景:
1.前台将图片和文本通过form表单提交到后台,图片我们都做了base64的编码,并且前台图片进行了压缩
2.form中action是一个cgi服务
3.后台cgi服务同时供PC,H5,APP
4.后台cgi中调用公共的cookie状态判断方法(公共的,大家都用,几年了没有问题)
问题:(折腾两天。。。。)
1.PC端cgi服务正常调用,cookie判断没
- 通过Nginx,Tomcat访问日志(access log)记录请求耗时
ronin47
一、Nginx通过$upstream_response_time $request_time统计请求和后台服务响应时间
nginx.conf使用配置方式:
log_format main '$remote_addr - $remote_user [$time_local] "$request" ''$status $body_bytes_sent "$http_r
- java-67- n个骰子的点数。 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
bylijinnan
java
public class ProbabilityOfDice {
/**
* Q67 n个骰子的点数
* 把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的值出现的概率。
* 在以下求解过程中,我们把骰子看作是有序的。
* 例如当n=2时,我们认为(1,2)和(2,1)是两种不同的情况
*/
private stati
- 看别人的博客,觉得心情很好
Cb123456
博客心情
以为写博客,就是总结,就和日记一样吧,同时也在督促自己。今天看了好长时间博客:
职业规划:
http://www.iteye.com/blogs/subjects/zhiyeguihua
android学习:
1.http://byandby.i
- [JWFD开源工作流]尝试用原生代码引擎实现循环反馈拓扑分析
comsci
工作流
我们已经不满足于仅仅跳跃一次,通过对引擎的升级,今天我测试了一下循环反馈模式,大概跑了200圈,引擎报一个溢出错误
在一个流程图的结束节点中嵌入一段方程,每次引擎运行到这个节点的时候,通过实时编译器GM模块,计算这个方程,计算结果与预设值进行比较,符合条件则跳跃到开始节点,继续新一轮拓扑分析,直到遇到
- JS常用的事件及方法
cwqcwqmax9
js
事件 描述
onactivate 当对象设置为活动元素时触发。
onafterupdate 当成功更新数据源对象中的关联对象后在数据绑定对象上触发。
onbeforeactivate 对象要被设置为当前元素前立即触发。
onbeforecut 当选中区从文档中删除之前在源对象触发。
onbeforedeactivate 在 activeElement 从当前对象变为父文档其它对象之前立即
- 正则表达式验证日期格式
dashuaifu
正则表达式IT其它java其它
正则表达式验证日期格式
function isDate(d){
var v = d.match(/^(\d{4})-(\d{1,2})-(\d{1,2})$/i);
if(!v) {
this.focus();
return false;
}
}
<input value="2000-8-8" onblu
- Yii CModel.rules() 方法 、validate预定义完整列表、以及说说验证
dcj3sjt126com
yii
public array rules () {return} array 要调用 validate() 时应用的有效性规则。 返回属性的有效性规则。声明验证规则,应重写此方法。 每个规则是数组具有以下结构:array('attribute list', 'validator name', 'on'=>'scenario name', ...validation
- UITextAttributeTextColor = deprecated in iOS 7.0
dcj3sjt126com
ios
In this lesson we used the key "UITextAttributeTextColor" to change the color of the UINavigationBar appearance to white. This prompts a warning "first deprecated in iOS 7.0."
Ins
- 判断一个数是质数的几种方法
EmmaZhao
Mathpython
质数也叫素数,是只能被1和它本身整除的正整数,最小的质数是2,目前发现的最大的质数是p=2^57885161-1【注1】。
判断一个数是质数的最简单的方法如下:
def isPrime1(n):
for i in range(2, n):
if n % i == 0:
return False
return True
但是在上面的方法中有一些冗余的计算,所以
- SpringSecurity工作原理小解读
坏我一锅粥
SpringSecurity
SecurityContextPersistenceFilter
ConcurrentSessionFilter
WebAsyncManagerIntegrationFilter
HeaderWriterFilter
CsrfFilter
LogoutFilter
Use
- JS实现自适应宽度的Tag切换
ini
JavaScripthtmlWebcsshtml5
效果体验:http://hovertree.com/texiao/js/3.htm
该效果使用纯JavaScript代码,实现TAB页切换效果,TAB标签根据内容自适应宽度,点击TAB标签切换内容页。
HTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
- Hbase Rest API : 数据查询
kane_xie
RESThbase
hbase(hadoop)是用java编写的,有些语言(例如python)能够对它提供良好的支持,但也有很多语言使用起来并不是那么方便,比如c#只能通过thrift访问。Rest就能很好的解决这个问题。Hbase的org.apache.hadoop.hbase.rest包提供了rest接口,它内嵌了jetty作为servlet容器。
启动命令:./bin/hbase rest s
- JQuery实现鼠标拖动元素移动位置(源码+注释)
明子健
jqueryjs源码拖动鼠标
欢迎讨论指正!
print.html代码:
<!DOCTYPE html>
<html>
<head>
<meta http-equiv=Content-Type content="text/html;charset=utf-8">
<title>发票打印</title>
&l
- Postgresql 连表更新字段语法 update
qifeifei
PostgreSQL
下面这段sql本来目的是想更新条件下的数据,可是这段sql却更新了整个表的数据。sql如下:
UPDATE tops_visa.visa_order
SET op_audit_abort_pass_date = now()
FROM
tops_visa.visa_order as t1
INNER JOIN tops_visa.visa_visitor as t2
ON t1.
- 将redis,memcache结合使用的方案?
tcrct
rediscache
公司架构上使用了阿里云的服务,由于阿里的kvstore收费相当高,打算自建,自建后就需要自己维护,所以就有了一个想法,针对kvstore(redis)及ocs(memcache)的特点,想自己开发一个cache层,将需要用到list,set,map等redis方法的继续使用redis来完成,将整条记录放在memcache下,即findbyid,save等时就memcache,其它就对应使用redi
- 开发中遇到的诡异的bug
wudixiaotie
bug
今天我们服务器组遇到个问题:
我们的服务是从Kafka里面取出数据,然后把offset存储到ssdb中,每个topic和partition都对应ssdb中不同的key,服务启动之后,每次kafka数据更新我们这边收到消息,然后存储之后就发现ssdb的值偶尔是-2,这就奇怪了,最开始我们是在代码中打印存储的日志,发现没什么问题,后来去查看ssdb的日志,才发现里面每次set的时候都会对同一个key