every blog every motto: There’s only one corner of the universe you can be sure of improving, and that’s your own self.
上一节我们讲了分类模型,这一节主要讲回归模型。
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl,np,pd,sklearn,tf,keras:
print(module.__name__,module.__version__)
from sklearn.datasets import fetch_california_housing
# 房价预测
housing = fetch_california_housing()
print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)
import pprint
pprint.pprint(housing.data[0:5])
pprint.pprint(housing.target[0:5])
# 划分样本
from sklearn.model_selection import train_test_split
x_train_all,x_test,y_train_all,y_test = train_test_split(housing.data,housing.target,random_state=7)
x_train,x_valid,y_train,y_valid = train_test_split(x_train_all,y_train_all,random_state=11)
print(x_train.shape,y_train.shape)
print(x_valid.shape,y_valid.shape)
print(x_test.shape,y_test.shape)
# 归一化
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.transform(x_valid)
x_test_scaled = scaler.transform(x_test)
# 搭建模型
model = keras.models.Sequential([
keras.layers.Dense(30,activation='relu',input_shape=x_train.shape[1:]),
keras.layers.Dense(1),
])
# 打印model信息
model.summary()
# 编译
model.compile(loss='mean_squared_error',optimizer="sgd")
# 回调函数
callbacks = [keras.callbacks.EarlyStopping(patience=5,min_delta=1e-3)]
#训练
history = model.fit(x_train_scaled,y_train,validation_data=(x_valid_scaled,y_valid),epochs=100,callbacks=callbacks)
# 学习曲线
def plot_learning_curves(history):
pd.DataFrame(history.history).plot(figsize=(8,5))
plt.grid(True)
plt.gca().set_ylim(0,1)
plt.show()
plot_learning_curves(history)
model.evaluate(x_test_scaled,y_test)