参考:
1、http://www.scipy-lectures.org/intro/matplotlib/index.html
2、http://matplotlib.org/tutorials/index.html
Chapter contents
For interactive matplotlib sessions, turn on the matplotlib mode
IPython console: | |
---|---|
When using the IPython console, use: In [1]: %matplotlib
|
|
Jupyter notebook: | |
In the notebook, insert, at the beginning of the notebook the following magic: %matplotlib inline
|
from matplotlib import pyplot as plt
import numpy as np X = np.linspace(-np.pi, np.pi, 256, endpoint=True) C, S = np.cos(X), np.sin(X)
import numpy as np import matplotlib.pyplot as plt X = np.linspace(-np.pi, np.pi, 256, endpoint=True) C, S = np.cos(X), np.sin(X) plt.plot(X, C) plt.plot(X, S) plt.show()
Hint
Documentation
import numpy as np import matplotlib.pyplot as plt # Create a figure of size 8x6 inches, 80 dots per inch plt.figure(figsize=(8, 6), dpi=80) # Create a new subplot from a grid of 1x1 plt.subplot(1, 1, 1) X = np.linspace(-np.pi, np.pi, 256, endpoint=True) C, S = np.cos(X), np.sin(X) # Plot cosine with a blue continuous line of width 1 (pixels) plt.plot(X, C, color="blue", linewidth=1.0, linestyle="-") # Plot sine with a green continuous line of width 1 (pixels) plt.plot(X, S, color="green", linewidth=1.0, linestyle="-") # Set x limits plt.xlim(-4.0, 4.0) # Set x ticks plt.xticks(np.linspace(-4, 4, 9, endpoint=True)) # Set y limits plt.ylim(-1.0, 1.0) # Set y ticks plt.yticks(np.linspace(-1, 1, 5, endpoint=True)) # Save figure using 72 dots per inch # plt.savefig("exercise_2.png", dpi=72) # Show result on screen plt.show()
Hint
Documentation
... plt.figure(figsize=(10, 6), dpi=80) plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-") plt.plot(X, S, color="red", linewidth=2.5, linestyle="-") ...
Hint
Documentation
...
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.ylim(C.min() * 1.1, C.max() * 1.1)
...
Hint
Documentation
... plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi]) plt.yticks([-1, 0, +1]) ...
Hint
Documentation
... plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi], [r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$']) plt.yticks([-1, 0, +1], [r'$-1$', r'$0$', r'$+1$']) ...
Hint
Documentation
... ax = plt.gca() # gca stands for 'get current axis' ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.xaxis.set_ticks_position('bottom') ax.spines['bottom'].set_position(('data',0)) ax.yaxis.set_ticks_position('left') ax.spines['left'].set_position(('data',0)) ...
Hint
Documentation
...
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")
plt.legend(loc='upper left')
...
Hint
Documentation
... t = 2 * np.pi / 3 plt.plot([t, t], [0, np.cos(t)], color='blue', linewidth=2.5, linestyle="--") plt.scatter([t, ], [np.cos(t), ], 50, color='blue') plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$', xy=(t, np.cos(t)), xycoords='data', xytext=(-90, -50), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) plt.plot([t, t],[0, np.sin(t)], color='red', linewidth=2.5, linestyle="--") plt.scatter([t, ],[np.sin(t), ], 50, color='red') plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$', xy=(t, np.sin(t)), xycoords='data', xytext=(+10, +30), textcoords='offset points', fontsize=16, arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2")) ...
Hint
Documentation
... for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(16) label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65)) ...
Hint
Documentation
. There are several parameters that determine what the figure looks like:
Argument | Default | Description |
---|---|---|
num |
1 |
number of figure |
figsize |
figure.figsize |
figure size in inches (width, height) |
dpi |
figure.dpi |
resolution in dots per inch |
facecolor |
figure.facecolor |
color of the drawing background |
edgecolor |
figure.edgecolor |
color of edge around the drawing background |
frameon |
True |
draw figure frame or not |
plt.close(1) # Closes figure 1
With subplot you can arrange plots in a regular grid. You need to specify the number of rows and columns and the number of the plot. Note that thegridspec command is a more powerful alternative.
Tick locators control the positions of the ticks. They are set as follows:
ax = plt.gca()
ax.xaxis.set_major_locator(eval(locator))
There are several locators for different kind of requirements:
All of these locators derive from the base classmatplotlib.ticker.Locator
. You can make your own locator deriving from it. Handling dates as ticks can be especially tricky. Therefore, matplotlib provides special locators in matplotlib.dates.
n = 256 X = np.linspace(-np.pi, np.pi, n, endpoint=True) Y = np.sin(2 * X) plt.plot(X, Y + 1, color='blue', alpha=1.00) plt.plot(X, Y - 1, color='blue', alpha=1.00)
Hint
You need to use the fill_between command.
n = 1024 X = np.random.normal(0,1,n) Y = np.random.normal(0,1,n) plt.scatter(X,Y)
Hint
Color is given by angle of (X,Y).
n = 12 X = np.arange(n) Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n) Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n) plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white') plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white') for x, y in zip(X, Y1): plt.text(x + 0.4, y + 0.05, '%.2f' % y, ha='center', va='bottom') plt.ylim(-1.25, +1.25)
Hint
You need to take care of text alignment.
def f(x, y): return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 -y ** 2) n = 256 x = np.linspace(-3, 3, n) y = np.linspace(-3, 3, n) X, Y = np.meshgrid(x, y) plt.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap='jet') C = plt.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5)
Hint
You need to use the clabelcommand.
def f(x, y): return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2) n = 10 x = np.linspace(-3, 3, 4 * n) y = np.linspace(-3, 3, 3 * n) X, Y = np.meshgrid(x, y) plt.imshow(f(X, Y))
Hint
You need to take care of the origin
of the image in the imshow command and use a colorbar
Z = np.random.uniform(0, 1, 20) plt.pie(Z)
Hint
You need to modify Z.
n = 8 X, Y = np.mgrid[0:n, 0:n] plt.quiver(X, Y)
Hint
You need to draw arrows twice.
axes = plt.gca() axes.set_xlim(0, 4) axes.set_ylim(0, 3) axes.set_xticklabels([]) axes.set_yticklabels([])
plt.subplot(2, 2, 1) plt.subplot(2, 2, 3) plt.subplot(2, 2, 4)
Hint
You can use several subplots with different partition.
plt.axes([0, 0, 1, 1]) N = 20 theta = np.arange(0., 2 * np.pi, 2 * np.pi / N) radii = 10 * np.random.rand(N) width = np.pi / 4 * np.random.rand(N) bars = plt.bar(theta, radii, width=width, bottom=0.0) for r, bar in zip(radii, bars): bar.set_facecolor(cm.jet(r / 10.)) bar.set_alpha(0.5)
Hint
You only need to modify theaxes
line
from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) X = np.arange(-4, 4, 0.25) Y = np.arange(-4, 4, 0.25) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='hot')
Hint
You need to use contourf
See also
3D plotting with Mayavi
Hint
Have a look at thematplotlib logo.
If you want to do a first quick pass through the Scipy lectures to learn the ecosystem, you can directly skip to the next chapter: Scipy : high-level scientific computing.
The remainder of this chapter is not necessary to follow the rest of the intro part. But be sure to come back and finish this chapter later.
|
import matplotlib.pyplot as plt >>> help(plt.plot) Help on function plot in module matplotlib.pyplot: plot(*args, **kwargs) Plot lines and/or markers to the :class:`~matplotlib.axes.Axes`. *args* is a variable length argument, allowing for multiple *x*, *y* pairs with an optional format string. For example, each of the following is legal:: plot(x, y) # plot x and y using default line style and color plot(x, y, 'bo') # plot x and y using blue circle markers plot(y) # plot y using x as index array 0..N-1 plot(y, 'r+') # ditto, but with red plusses If *x* and/or *y* is 2-dimensional, then the corresponding columns will be plotted. ...
The matplotlib gallery is also incredibly useful when you search how to render a given graphic. Each example comes with its source.
Finally, there is a user mailing list where you can ask for help and adevelopers mailing list that is more technical.
Property | Description | Appearance |
---|---|---|
alpha (or a) | alpha transparency on 0-1 scale | ![]() |
antialiased | True or False - use antialised rendering | ![]() ![]() |
color (or c) | matplotlib color arg | ![]() |
linestyle (or ls) | see Line properties | |
linewidth (or lw) | float, the line width in points | ![]() |
solid_capstyle | Cap style for solid lines | ![]() |
solid_joinstyle | Join style for solid lines | ![]() |
dash_capstyle | Cap style for dashes | ![]() |
dash_joinstyle | Join style for dashes | ![]() |
marker | see Markers | |
markeredgewidth (mew) | line width around the marker symbol | ![]() |
markeredgecolor (mec) | edge color if a marker is used | ![]() |
markerfacecolor (mfc) | face color if a marker is used | ![]() |
markersize (ms) | size of the marker in points | ![]() |
A simple pie chart example with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
n = 20
Z = np.ones(n)
Z[-1] *= 2
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.pie(Z, explode=Z*.05, colors = ['%f' % (i/float(n)) for i in range(n)])
plt.axis('equal')
plt.xticks(())
plt.yticks()
plt.show()
A simple example showing how to plot a scatter of points with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
n = 1024
X = np.random.normal(0, 1, n)
Y = np.random.normal(0, 1, n)
T = np.arctan2(Y, X)
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.scatter(X, Y, s=75, c=T, alpha=.5)
plt.xlim(-1.5, 1.5)
plt.xticks(())
plt.ylim(-1.5, 1.5)
plt.yticks(())
plt.show()
Demoing some simple features of matplotlib
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(5, 4), dpi=72)
axes = fig.add_axes([0.01, 0.01, .98, 0.98])
X = np.linspace(0, 2, 200, endpoint=True)
Y = np.sin(2*np.pi*X)
plt.plot(X, Y, lw=2)
plt.ylim(-1.1, 1.1)
plt.grid()
plt.show()
Show multiple subplots in matplotlib.
import matplotlib.pyplot as plt
fig = plt.figure()
fig.subplots_adjust(bottom=0.025, left=0.025, top = 0.975, right=0.975)
plt.subplot(2, 1, 1)
plt.xticks(()), plt.yticks(())
plt.subplot(2, 3, 4)
plt.xticks(())
plt.yticks(())
plt.subplot(2, 3, 5)
plt.xticks(())
plt.yticks(())
plt.subplot(2, 3, 6)
plt.xticks(())
plt.yticks(())
plt.show()
This example shows a couple of simple usage of axes.
import matplotlib.pyplot as plt
plt.axes([.1, .1, .8, .8])
plt.xticks(())
plt.yticks(())
plt.text(.6, .6, 'axes([0.1, 0.1, .8, .8])', ha='center', va='center',
size=20, alpha=.5)
plt.axes([.2, .2, .3, .3])
plt.xticks(())
plt.yticks(())
plt.text(.5, .5, 'axes([0.2, 0.2, .3, .3])', ha='center', va='center',
size=16, alpha=.5)
plt.show()
A plotting example with a few simple tweaks
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(5, 4), dpi=72)
axes = fig.add_axes([0.01, 0.01, .98, 0.98])
x = np.linspace(0, 2, 200, endpoint=True)
y = np.sin(2 * np.pi * x)
plt.plot(x, y, lw=.25, c='k')
plt.xticks(np.arange(0.0, 2.0, 0.1))
plt.yticks(np.arange(-1.0, 1.0, 0.1))
plt.grid()
plt.show()
An example showing horizontal arrangement of subplots with matplotlib.
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 4))
plt.subplot(2, 1, 1)
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'subplot(2,1,1)', ha='center', va='center',
size=24, alpha=.5)
plt.subplot(2, 1, 2)
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'subplot(2,1,2)', ha='center', va='center',
size=24, alpha=.5)
plt.tight_layout()
plt.show()
An example showing vertical arrangement of subplots with matplotlib.
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 4))
plt.subplot(1, 2, 1)
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'subplot(1,2,1)', ha='center', va='center',
size=24, alpha=.5)
plt.subplot(1, 2, 2)
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'subplot(1,2,2)', ha='center', va='center',
size=24, alpha=.5)
plt.tight_layout()
plt.show()
A simple example of 3D plotting.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X ** 2 + Y ** 2)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot)
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot)
ax.set_zlim(-2, 2)
plt.show()
An example demoing imshow and styling the figure.
import numpy as np
import matplotlib.pyplot as plt
def f(x, y):
return (1 - x / 2 + x ** 5 + y ** 3 ) * np.exp(-x ** 2 - y ** 2)
n = 10
x = np.linspace(-3, 3, 3.5 * n)
y = np.linspace(-3, 3, 3.0 * n)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.imshow(Z, interpolation='nearest', cmap='bone', origin='lower')
plt.colorbar(shrink=.92)
plt.xticks(())
plt.yticks(())
plt.show()
A simple example showing how to plot a vector field (quiver) with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
n = 8
X, Y = np.mgrid[0:n, 0:n]
T = np.arctan2(Y - n / 2., X - n/2.)
R = 10 + np.sqrt((Y - n / 2.0) ** 2 + (X - n / 2.0) ** 2)
U, V = R * np.cos(T), R * np.sin(T)
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.quiver(X, Y, U, V, R, alpha=.5)
plt.quiver(X, Y, U, V, edgecolor='k', facecolor='None', linewidth=.5)
plt.xlim(-1, n)
plt.xticks(())
plt.ylim(-1, n)
plt.yticks(())
plt.show()
A simple example showing how to plot in polar coordinnates with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
ax = plt.axes([0.025, 0.025, 0.95, 0.95], polar=True)
N = 20
theta = np.arange(0.0, 2 * np.pi, 2 * np.pi / N)
radii = 10 * np.random.rand(N)
width = np.pi / 4 * np.random.rand(N)
bars = plt.bar(theta, radii, width=width, bottom=0.0)
for r,bar in zip(radii, bars):
bar.set_facecolor(plt.cm.jet(r/10.))
bar.set_alpha(0.5)
ax.set_xticklabels([])
ax.set_yticklabels([])
plt.show()
An example showing how to display the contours of a function with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
def f(x,y):
return (1 - x / 2 + x**5 + y**3) * np.exp(-x**2 -y**2)
n = 256
x = np.linspace(-3, 3, n)
y = np.linspace(-3, 3, n)
X,Y = np.meshgrid(x, y)
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.contourf(X, Y, f(X, Y), 8, alpha=.75, cmap=plt.cm.hot)
C = plt.contour(X, Y, f(X, Y), 8, colors='black', linewidth=.5)
plt.clabel(C, inline=1, fontsize=10)
plt.xticks(())
plt.yticks(())
plt.show()
An “ugly” example of plotting.
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
matplotlib.rc('grid', color='black', linestyle='-', linewidth=1)
fig = plt.figure(figsize=(5,4),dpi=72)
axes = fig.add_axes([0.01, 0.01, .98, 0.98], axisbg='.75')
X = np.linspace(0, 2, 40, endpoint=True)
Y = np.sin(2 * np.pi * X)
plt.plot(X, Y, lw=.05, c='b', antialiased=False)
plt.xticks(())
plt.yticks(np.arange(-1., 1., 0.2))
plt.grid()
ax = plt.gca()
plt.show()
Simple example of plots and filling between them with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
n = 256
X = np.linspace(-np.pi, np.pi, n, endpoint=True)
Y = np.sin(2 * X)
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.plot(X, Y + 1, color='blue', alpha=1.00)
plt.fill_between(X, 1, Y + 1, color='blue', alpha=.25)
plt.plot(X, Y - 1, color='blue', alpha=1.00)
plt.fill_between(X, -1, Y - 1, (Y - 1) > -1, color='blue', alpha=.25)
plt.fill_between(X, -1, Y - 1, (Y - 1) < -1, color='red', alpha=.25)
plt.xlim(-np.pi, np.pi)
plt.xticks(())
plt.ylim(-2.5, 2.5)
plt.yticks(())
plt.show()
An example of bar plots with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
n = 12
X = np.arange(n)
Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
plt.axes([0.025, 0.025, 0.95, 0.95])
plt.bar(X, +Y1, facecolor='#9999ff', edgecolor='white')
plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')
for x, y in zip(X, Y1):
plt.text(x + 0.4, y + 0.05, '%.2f' % y, ha='center', va= 'bottom')
for x, y in zip(X, Y2):
plt.text(x + 0.4, -y - 0.05, '%.2f' % y, ha='center', va= 'top')
plt.xlim(-.5, n)
plt.xticks(())
plt.ylim(-1.25, 1.25)
plt.yticks(())
plt.show()
An example showing the subplot grid in matplotlib.
import matplotlib.pyplot as plt
plt.figure(figsize=(6, 4))
plt.subplot(2, 2, 1)
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'subplot(2,2,1)', ha='center', va='center',
size=20, alpha=.5)
plt.subplot(2, 2, 2)
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'subplot(2,2,2)', ha='center', va='center',
size=20, alpha=.5)
plt.subplot(2, 2, 3)
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'subplot(2,2,3)', ha='center', va='center',
size=20, alpha=.5)
plt.subplot(2, 2, 4)
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'subplot(2,2,4)', ha='center', va='center',
size=20, alpha=.5)
plt.tight_layout()
plt.show()
This example shows various axes command to position matplotlib axes.
import matplotlib.pyplot as plt
plt.axes([.1, .1, .5, .5])
plt.xticks(())
plt.yticks(())
plt.text(0.1, 0.1, 'axes([0.1, 0.1, .8, .8])', ha='left', va='center',
size=16, alpha=.5)
plt.axes([.2, .2, .5, .5])
plt.xticks(())
plt.yticks(())
plt.text(0.1, 0.1, 'axes([0.2, 0.2, .5, .5])', ha='left', va='center',
size=16, alpha=.5)
plt.axes([0.3, 0.3, .5, .5])
plt.xticks(())
plt.yticks(())
plt.text(0.1, 0.1, 'axes([0.3, 0.3, .5, .5])', ha='left', va='center',
size=16, alpha=.5)
plt.axes([.4, .4, .5, .5])
plt.xticks(())
plt.yticks(())
plt.text(0.1, 0.1, 'axes([0.4, 0.4, .5, .5])', ha='left', va='center',
size=16, alpha=.5)
plt.show()
Displaying a grid on the axes in matploblib.
import matplotlib.pyplot as plt
ax = plt.axes([0.025, 0.025, 0.95, 0.95])
ax.set_xlim(0,4)
ax.set_ylim(0,3)
ax.xaxis.set_major_locator(plt.MultipleLocator(1.0))
ax.xaxis.set_minor_locator(plt.MultipleLocator(0.1))
ax.yaxis.set_major_locator(plt.MultipleLocator(1.0))
ax.yaxis.set_minor_locator(plt.MultipleLocator(0.1))
ax.grid(which='major', axis='x', linewidth=0.75, linestyle='-', color='0.75')
ax.grid(which='minor', axis='x', linewidth=0.25, linestyle='-', color='0.75')
ax.grid(which='major', axis='y', linewidth=0.75, linestyle='-', color='0.75')
ax.grid(which='minor', axis='y', linewidth=0.25, linestyle='-', color='0.75')
ax.set_xticklabels([])
ax.set_yticklabels([])
plt.show()
Demo 3D plotting with matplotlib and style the figure.
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import axes3d
ax = plt.gca(projection='3d')
X, Y, Z = axes3d.get_test_data(0.05)
cset = ax.contourf(X, Y, Z)
ax.clabel(cset, fontsize=9, inline=1)
plt.xticks(())
plt.yticks(())
ax.set_zticks(())
ax.text2D(-0.05, 1.05, " 3D plots \n",
horizontalalignment='left',
verticalalignment='top',
bbox=dict(facecolor='white', alpha=1.0),
family='Lint McCree Intl BB',
size='x-large',
transform=plt.gca().transAxes)
ax.text2D(-0.05, .975, " Plot 2D or 3D data",
horizontalalignment='left',
verticalalignment='top',
family='Lint McCree Intl BB',
size='medium',
transform=plt.gca().transAxes)
plt.show()
An example demoing gridspec
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
plt.figure(figsize=(6, 4))
G = gridspec.GridSpec(3, 3)
axes_1 = plt.subplot(G[0, :])
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'Axes 1', ha='center', va='center', size=24, alpha=.5)
axes_2 = plt.subplot(G[1, :-1])
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'Axes 2', ha='center', va='center', size=24, alpha=.5)
axes_3 = plt.subplot(G[1:, -1])
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'Axes 3', ha='center', va='center', size=24, alpha=.5)
axes_4 = plt.subplot(G[-1, 0])
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'Axes 4', ha='center', va='center', size=24, alpha=.5)
axes_5 = plt.subplot(G[-1, -2])
plt.xticks(())
plt.yticks(())
plt.text(0.5, 0.5, 'Axes 5', ha='center', va='center', size=24, alpha=.5)
plt.tight_layout()
plt.show()
A example showing off elaborate text printing with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
eqs = []
eqs.append((r"$W^{3\beta}_{\delta_1 \rho_1 \sigma_2} = U^{3\beta}_{\delta_1 \rho_1} + \frac{1}{8 \pi 2} \int^{\alpha_2}_{\alpha_2} d \alpha^\prime_2 \left[\frac{ U^{2\beta}_{\delta_1 \rho_1} - \alpha^\prime_2U^{1\beta}_{\rho_1 \sigma_2} }{U^{0\beta}_{\rho_1 \sigma_2}}\right]$"))
eqs.append((r"$\frac{d\rho}{d t} + \rho \vec{v}\cdot\nabla\vec{v} = -\nabla p + \mu\nabla^2 \vec{v} + \rho \vec{g}$"))
eqs.append((r"$\int_{-\infty}^\infty e^{-x^2}dx=\sqrt{\pi}$"))
eqs.append((r"$E = mc^2 = \sqrt{{m_0}^2c^4 + p^2c^2}$"))
eqs.append((r"$F_G = G\frac{m_1m_2}{r^2}$"))
plt.axes([0.025, 0.025, 0.95, 0.95])
for i in range(24):
index = np.random.randint(0, len(eqs))
eq = eqs[index]
size = np.random.uniform(12, 32)
x,y = np.random.uniform(0, 1, 2)
alpha = np.random.uniform(0.25, .75)
plt.text(x, y, eq, ha='center', va='center', color="#11557c", alpha=alpha,
transform=plt.gca().transAxes, fontsize=size, clip_on=True)
plt.xticks(())
plt.yticks(())
plt.show()
Solution of the excercise 1 with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
n = 256
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C,S = np.cos(X), np.sin(X)
plt.plot(X, C)
plt.plot(X,S)
plt.show()
Exercise 4 with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5), dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
S = np.sin(X)
C = np.cos(X)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-")
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.ylim(C.min() * 1.1, C.max() * 1.1)
plt.show()
Exercise 3 with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5), dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-")
plt.xlim(-4.0, 4.0)
plt.xticks(np.linspace(-4, 4, 9, endpoint=True))
plt.ylim(-1.0, 1.0)
plt.yticks(np.linspace(-1, 1, 5, endpoint=True))
plt.show()
Exercise 5 with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5), dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
S = np.sin(X)
C = np.cos(X)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-")
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi])
plt.ylim(C.min() * 1.1, C.max() * 1.1)
plt.yticks([-1, 0, +1])
plt.show()
Exercise 6 with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5), dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C = np.cos(X)
S = np.sin(X)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-")
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.ylim(C.min() * 1.1, C.max() * 1.1)
plt.yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])
plt.show()
Exercise 2 with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
# Create a new figure of size 8x6 points, using 100 dots per inch
plt.figure(figsize=(8, 6), dpi=80)
# Create a new subplot from a grid of 1x1
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
# Plot cosine using blue color with a continuous line of width 1 (pixels)
plt.plot(X, C, color="blue", linewidth=1.0, linestyle="-")
# Plot sine using green color with a continuous line of width 1 (pixels)
plt.plot(X, S, color="green", linewidth=1.0, linestyle="-")
# Set x limits
plt.xlim(-4., 4.)
# Set x ticks
plt.xticks(np.linspace(-4, 4, 9, endpoint=True))
# Set y limits
plt.ylim(-1.0, 1.0)
# Set y ticks
plt.yticks(np.linspace(-1, 1, 5, endpoint=True))
# Show result on screen
plt.show()
Exercise 7 with matplotlib
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8,5), dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C = np.cos(X)
S = np.sin(X)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-")
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.ylim(C.min() * 1.1, C.max() * 1.1)
plt.yticks([-1, 0, +1],
[r'$-1$', r'$0$', r'$+1$'])
plt.show()
Exercise 8 with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8,5), dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C = np.cos(X)
S = np.sin(X)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.ylim(C.min() * 1.1, C.max() * 1.1)
plt.yticks([-1, +1],
[r'$-1$', r'$+1$'])
plt.legend(loc='upper left')
plt.show()
Exercise 9 with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5), dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256,endpoint=True)
C = np.cos(X)
S = np.sin(X)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data',0))
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.xticks([-np.pi, -np.pi/2, 0, np.pi/2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.ylim(C.min() * 1.1, C.max() * 1.1)
plt.yticks([-1, +1],
[r'$-1$', r'$+1$'])
t = 2*np.pi/3
plt.plot([t, t], [0, np.cos(t)],
color='blue', linewidth=1.5, linestyle="--")
plt.scatter([t, ], [np.cos(t), ], 50, color='blue')
plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(+10, +30), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
plt.plot([t, t], [0, np.sin(t)],
color='red', linewidth=1.5, linestyle="--")
plt.scatter([t, ], [np.sin(t), ], 50, color='red')
plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$', xy=(t, np.cos(t)),
xycoords='data', xytext=(-90, -50), textcoords='offset points',
fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
plt.legend(loc='upper left')
plt.show()
Exercises with matplotlib.
import numpy as np
import matplotlib.pyplot as plt
plt.figure(figsize=(8, 5), dpi=80)
plt.subplot(111)
X = np.linspace(-np.pi, np.pi, 256, endpoint=True)
C, S = np.cos(X), np.sin(X)
plt.plot(X, C, color="blue", linewidth=2.5, linestyle="-", label="cosine")
plt.plot(X, S, color="red", linewidth=2.5, linestyle="-", label="sine")
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data', 0))
ax.yaxis.set_ticks_position('left')
ax.spines['left'].set_position(('data', 0))
plt.xlim(X.min() * 1.1, X.max() * 1.1)
plt.xticks([-np.pi, -np.pi / 2, 0, np.pi / 2, np.pi],
[r'$-\pi$', r'$-\pi/2$', r'$0$', r'$+\pi/2$', r'$+\pi$'])
plt.ylim(C.min() * 1.1, C.max() * 1.1)
plt.yticks([-1, 1],
[r'$-1$', r'$+1$'])
plt.legend(loc='upper left')
t = 2*np.pi/3
plt.plot([t, t], [0, np.cos(t)],
color='blue', linewidth=1.5, linestyle="--")
plt.scatter([t, ], [np.cos(t), ], 50, color='blue')
plt.annotate(r'$sin(\frac{2\pi}{3})=\frac{\sqrt{3}}{2}$',
xy=(t, np.sin(t)), xycoords='data',
xytext=(10, 30), textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
plt.plot([t, t], [0, np.sin(t)],
color='red', linewidth=1.5, linestyle="--")
plt.scatter([t, ], [np.sin(t), ], 50, color ='red')
plt.annotate(r'$cos(\frac{2\pi}{3})=-\frac{1}{2}$', xy=(t, np.cos(t)),
xycoords='data', xytext=(-90, -50),
textcoords='offset points', fontsize=16,
arrowprops=dict(arrowstyle="->", connectionstyle="arc3,rad=.2"))
for label in ax.get_xticklabels() + ax.get_yticklabels():
label.set_fontsize(16)
label.set_bbox(dict(facecolor='white', edgecolor='None', alpha=0.65 ))
plt.show()
An example demoing the various colors taken by matplotlib’s plot.
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize = size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0.1, 1, .8], frameon=False)
for i in range(1,11):
plt.plot([i, i], [0, 1], lw=1.5)
plt.xlim(0, 11)
plt.xticks(())
plt.yticks(())
plt.show()
Plot various linewidth with matplotlib.
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize = size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, .1, 1, .8], frameon=False)
for i in range(1, 11):
plt.plot([i, i], [0, 1], color='b', lw=i/2.)
plt.xlim(0, 11)
plt.ylim(0, 1)
plt.xticks(())
plt.yticks(())
plt.show()
This example demonstrates using alpha for transparency.
import matplotlib.pyplot as plt
size = 256,16
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0.1, 1, .8], frameon=False)
for i in range(1, 11):
plt.axvline(i, linewidth=1, color='blue', alpha= .25 + .75 * i / 10.)
plt.xlim(0, 11)
plt.xticks(())
plt.yticks(())
plt.show()
This example demonstrates aliased versus anti-aliased text.
import matplotlib.pyplot as plt
size = 128, 16
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
plt.rcParams['text.antialiased'] = False
plt.text(0.5, 0.5, "Aliased", ha='center', va='center')
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xticks(())
plt.yticks(())
plt.show()
The example shows aliased versus anti-aliased text.
import matplotlib.pyplot as plt
size = 128, 16
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
plt.rcParams['text.antialiased'] = True
plt.text(0.5, 0.5, "Anti-aliased", ha='center', va='center')
plt.xlim(0, 1)
plt.ylim(0, 1)
plt.xticks(())
plt.yticks(())
plt.show()
Demo the marker size control in matplotlib.
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize = size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
for i in range(1, 11):
plt.plot([i, ], [1, ], 's', markersize=i, markerfacecolor='w',
markeredgewidth=.5, markeredgecolor='k')
plt.xlim(0, 11)
plt.xticks(())
plt.yticks(())
plt.show()
Demo the marker edge widths of matplotlib’s markers.
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
for i in range(1,11):
plt.plot([i, ], [1, ], 's', markersize=5,
markeredgewidth=1 + i/10., markeredgecolor='k', markerfacecolor='w')
plt.xlim(0, 11)
plt.xticks(())
plt.yticks(())
plt.show()
Demo the marker edge color of matplotlib’s markers.
import numpy as np
import matplotlib.pyplot as plt
size = 256,16
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
for i in range(1, 11):
r, g, b = np.random.uniform(0, 1, 3)
plt.plot([i, ], [1, ], 's', markersize=5, markerfacecolor='w',
markeredgewidth=1.5, markeredgecolor=(r, g, b, 1))
plt.xlim(0, 11)
plt.xticks(())
plt.yticks(())
plt.show()
Demo the marker face color of matplotlib’s markers.
import numpy as np
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize = size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
for i in range(1, 11):
r, g, b = np.random.uniform(0, 1, 3)
plt.plot([i, ], [1, ], 's', markersize=8, markerfacecolor=(r, g, b, 1),
markeredgewidth=.1, markeredgecolor=(0, 0, 0, .5))
plt.xlim(0, 11)
plt.xticks(())
plt.yticks(())
plt.show()
An example plotting the matplotlib colormaps.
import numpy as np
import matplotlib.pyplot as plt
plt.rc('text', usetex=False)
a = np.outer(np.arange(0, 1, 0.01), np.ones(10))
plt.figure(figsize=(10, 5))
plt.subplots_adjust(top=0.8, bottom=0.05, left=0.01, right=0.99)
maps = [m for m in plt.cm.datad if not m.endswith("_r")]
maps.sort()
l = len(maps) + 1
for i, m in enumerate(maps):
plt.subplot(1, l, i+1)
plt.axis("off")
plt.imshow(a, aspect='auto', cmap=plt.get_cmap(m), origin="lower")
plt.title(m, rotation=90, fontsize=10, va='bottom')
plt.show()
An example demoing the solide cap style in matplotlib.
import numpy as np
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
plt.plot(np.arange(4), np.ones(4), color="blue", linewidth=8,
solid_capstyle='butt')
plt.plot(5 + np.arange(4), np.ones(4), color="blue", linewidth=8,
solid_capstyle='round')
plt.plot(10 + np.arange(4), np.ones(4), color="blue", linewidth=8,
solid_capstyle='projecting')
plt.xlim(0, 14)
plt.xticks(())
plt.yticks(())
plt.show()
An example showing the differen solid joint styles in matplotlib.
import numpy as np
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize = size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
plt.plot(np.arange(3), [0, 1, 0], color="blue", linewidth=8,
solid_joinstyle='miter')
plt.plot(4 + np.arange(3), [0, 1, 0], color="blue", linewidth=8,
solid_joinstyle='bevel')
plt.plot(8 + np.arange(3), [0, 1, 0], color="blue", linewidth=8,
solid_joinstyle='round')
plt.xlim(0, 12)
plt.ylim(-1, 2)
plt.xticks(())
plt.yticks(())
plt.show()
An example demoing the dash capstyle.
import numpy as np
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize = size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
plt.plot(np.arange(4), np.ones(4), color="blue", dashes=[15, 15],
linewidth=8, dash_capstyle='butt')
plt.plot(5 + np.arange(4), np.ones(4), color="blue", dashes=[15, 15],
linewidth=8, dash_capstyle='round')
plt.plot(10 + np.arange(4), np.ones(4), color="blue", dashes=[15, 15],
linewidth=8, dash_capstyle='projecting')
plt.xlim(0, 14)
plt.xticks(())
plt.yticks(())
plt.show()
Example demoing the dash join style.
import numpy as np
import matplotlib.pyplot as plt
size = 256, 16
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
plt.axes([0, 0, 1, 1], frameon=False)
plt.plot(np.arange(3), [0, 1, 0], color="blue", dashes=[12, 5], linewidth=8,
dash_joinstyle='miter')
plt.plot(4 + np.arange(3), [0, 1, 0], color="blue", dashes=[12, 5],
linewidth=8, dash_joinstyle='bevel')
plt.plot(8 + np.arange(3), [0, 1, 0], color="blue", dashes=[12, 5],
linewidth=8, dash_joinstyle='round')
plt.xlim(0, 12)
plt.ylim(-1, 2)
plt.xticks(())
plt.yticks(())
plt.show()
Plot the different line styles.
import numpy as np
import matplotlib.pyplot as plt
def linestyle(ls, i):
X = i * .5 * np.ones(11)
Y = np.arange(11)
plt.plot(X, Y, ls, color=(.0, .0, 1, 1), lw=3, ms=8,
mfc=(.75, .75, 1, 1), mec=(0, 0, 1, 1))
plt.text(.5 * i, 10.25, ls, rotation=90, fontsize=15, va='bottom')
linestyles = ['-', '--', ':', '-.', '.', ',', 'o', '^', 'v', '<', '>', 's',
'+', 'x', 'd', '1', '2', '3', '4', 'h', 'p', '|', '_', 'D', 'H']
n_lines = len(linestyles)
size = 20 * n_lines, 300
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
plt.axes([0, 0.01, 1, .9], frameon=False)
for i, ls in enumerate(linestyles):
linestyle(ls, i)
plt.xlim(-.2, .2 + .5*n_lines)
plt.xticks(())
plt.yticks(())
plt.show()
Show the different markers of matplotlib.
import numpy as np
import matplotlib.pyplot as plt
def marker(m, i):
X = i * .5 * np.ones(11)
Y = np.arange(11)
plt.plot(X, Y, lw=1, marker=m, ms=10, mfc=(.75, .75, 1, 1),
mec=(0, 0, 1, 1))
plt.text(.5 * i, 10.25, repr(m), rotation=90, fontsize=15, va='bottom')
markers = [0, 1, 2, 3, 4, 5, 6, 7, 'o', 'h', '_', '1', '2', '3', '4',
'8', 'p', '^', 'v', '<', '>', '|', 'd', ',', '+', 's', '*',
'|', 'x', 'D', 'H', '.']
n_markers = len(markers)
size = 20 * n_markers, 300
dpi = 72.0
figsize= size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
plt.axes([0, 0.01, 1, .9], frameon=False)
for i, m in enumerate(markers):
marker(m, i)
plt.xlim(-.2, .2 + .5 * n_markers)
plt.xticks(())
plt.yticks(())
plt.show()
An example demoing different locators to position ticks on axis for matplotlib.
import numpy as np
import matplotlib.pyplot as plt
def tickline():
plt.xlim(0, 10), plt.ylim(-1, 1), plt.yticks([])
ax = plt.gca()
ax.spines['right'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['top'].set_color('none')
ax.xaxis.set_ticks_position('bottom')
ax.spines['bottom'].set_position(('data',0))
ax.yaxis.set_ticks_position('none')
ax.xaxis.set_minor_locator(plt.MultipleLocator(0.1))
ax.plot(np.arange(11), np.zeros(11))
return ax
locators = [
'plt.NullLocator()',
'plt.MultipleLocator(1.0)',
'plt.FixedLocator([0, 2, 8, 9, 10])',
'plt.IndexLocator(3, 1)',
'plt.LinearLocator(5)',
'plt.LogLocator(2, [1.0])',
'plt.AutoLocator()',
]
n_locators = len(locators)
size = 512, 40 * n_locators
dpi = 72.0
figsize = size[0] / float(dpi), size[1] / float(dpi)
fig = plt.figure(figsize=figsize, dpi=dpi)
fig.patch.set_alpha(0)
for i, locator in enumerate(locators):
plt.subplot(n_locators, 1, i + 1)
ax = tickline()
ax.xaxis.set_major_locator(eval(locator))
plt.text(5, 0.3, locator[3:], ha='center')
plt.subplots_adjust(bottom=.01, top=.99, left=.01, right=.99)
plt.show()
An example showing how to plot in polar coordinnate, and some decorations.
import numpy as np
import matplotlib.pyplot as plt
plt.subplot(1, 1, 1, polar=True)
N = 20
theta = np.arange(0.0, 2 * np.pi, 2 * np.pi / N)
radii = 10 * np.random.rand(N)
width = np.pi / 4 * np.random.rand(N)
bars = plt.bar(theta, radii, width=width, bottom=0.0)
for r, bar in zip(radii, bars):
bar.set_facecolor(plt.cm.jet(r / 10.))
bar.set_alpha(0.5)
plt.gca().set_xticklabels([])
plt.gca().set_yticklabels([])
plt.text(-0.2, 1.02, " Polar Axis \n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
bbox=dict(facecolor='white', alpha=1.0),
transform=plt.gca().transAxes)
plt.text(-0.2, 1.01, "\n\n Plot anything using polar axis ",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=plt.gca().transAxes)
plt.show()
Demo 3D plotting with matplotlib and decorate the figure.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = Axes3D(fig)
X = np.arange(-4, 4, 0.25)
Y = np.arange(-4, 4, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X ** 2 + Y ** 2)
Z = np.sin(R)
ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.cm.hot)
ax.contourf(X, Y, Z, zdir='z', offset=-2, cmap=plt.cm.hot)
ax.set_zlim(-2, 2)
plt.xticks(())
plt.yticks(())
ax.set_zticks(())
ax.text2D(0.05, .93, " 3D plots \n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
bbox=dict(facecolor='white', alpha=1.0),
transform=plt.gca().transAxes)
ax.text2D(0.05, .87, " Plot 2D or 3D data",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=plt.gca().transAxes)
plt.show()
An example of plots with matplotlib, and added annotations.
import numpy as np
import matplotlib.pyplot as plt
n = 256
X = np.linspace(0, 2, n)
Y = np.sin(2 * np.pi * X)
plt.plot (X, Y, lw=2, color='violet')
plt.xlim(-0.2, 2.2)
plt.xticks(())
plt.ylim(-1.2, 1.2)
plt.yticks(())
# Add a title and a box around it
from matplotlib.patches import FancyBboxPatch
ax = plt.gca()
ax.add_patch(FancyBboxPatch((-0.05, .87),
width=.66, height=.165, clip_on=False,
boxstyle="square,pad=0", zorder=3,
facecolor='white', alpha=1.0,
transform=plt.gca().transAxes))
plt.text(-0.05, 1.02, " Regular Plot: plt.plot(...)\n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
transform=plt.gca().transAxes)
plt.text(-0.05, 1.01, "\n\n Plot lines and/or markers ",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=plt.gca().transAxes)
plt.show()
Demo multiple plots and style the figure.
import matplotlib.pyplot as plt
ax = plt.subplot(2, 1, 1)
ax.set_xticklabels([])
ax.set_yticklabels([])
# Add a title and a box around it
from matplotlib.patches import FancyBboxPatch
ax = plt.gca()
ax.add_patch(FancyBboxPatch((-0.05, .72),
width=.66, height=.34, clip_on=False,
boxstyle="square,pad=0", zorder=3,
facecolor='white', alpha=1.0,
transform=plt.gca().transAxes))
plt.text(-0.05, 1.02, " Multiplot: plt.subplot(...)\n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
transform=ax.transAxes)
plt.text(-0.05, 1.01, "\n\n Plot several plots at once ",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=ax.transAxes)
ax = plt.subplot(2, 2, 3)
ax.set_xticklabels([])
ax.set_yticklabels([])
ax = plt.subplot(2, 2, 4)
ax.set_xticklabels([])
ax.set_yticklabels([])
plt.show()
An example of doing box plots with matplotlib
import numpy as np
import matplotlib.pyplot as plt
fig = plt.figure(figsize=(8, 5))
axes = plt.subplot(111)
n = 5
Z = np.zeros((n, 4))
X = np.linspace(0, 2, n, endpoint=True)
Y = np.random.random((n, 4))
plt.boxplot(Y)
plt.xticks(())
plt.yticks(())
# Add a title and a box around it
from matplotlib.patches import FancyBboxPatch
ax = plt.gca()
ax.add_patch(FancyBboxPatch((-0.05, .87),
width=.66, height=.165, clip_on=False,
boxstyle="square,pad=0", zorder=3,
facecolor='white', alpha=1.0,
transform=plt.gca().transAxes))
plt.text(-0.05, 1.02, " Box Plot: plt.boxplot(...)\n ",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
transform=axes.transAxes)
plt.text(-0.04, .98, "\n Make a box and whisker plot ",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=axes.transAxes)
plt.show()
An example showing the scatter function, with decorations.
import numpy as np
import matplotlib.pyplot as plt
n = 1024
X = np.random.normal(0, 1, n)
Y = np.random.normal(0, 1, n)
T = np.arctan2(Y,X)
plt.scatter(X, Y, s=75, c=T, alpha=.5)
plt.xlim(-1.5, 1.5)
plt.xticks(())
plt.ylim(-1.5, 1.5)
plt.yticks(())
# Add a title and a box around it
from matplotlib.patches import FancyBboxPatch
ax = plt.gca()
ax.add_patch(FancyBboxPatch((-0.05, .87),
width=.66, height=.165, clip_on=False,
boxstyle="square,pad=0", zorder=3,
facecolor='white', alpha=1.0,
transform=plt.gca().transAxes))
plt.text(-0.05, 1.02, " Scatter Plot: plt.scatter(...)\n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
transform=plt.gca().transAxes)
plt.text(-0.05, 1.01, "\n\n Make a scatter plot of x versus y ",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=plt.gca().transAxes)
plt.show()
Demo pie chart with matplotlib and style the figure.
import numpy as np
import matplotlib.pyplot as plt
n = 20
X = np.ones(n)
X[-1] *= 2
plt.pie(X, explode=X*.05, colors = ['%f' % (i/float(n)) for i in range(n)])
fig = plt.gcf()
w, h = fig.get_figwidth(), fig.get_figheight()
r = h / float(w)
plt.xlim(-1.5, 1.5)
plt.ylim(-1.5 * r, 1.5 * r)
plt.xticks(())
plt.yticks(())
# Add a title and a box around it
from matplotlib.patches import FancyBboxPatch
ax = plt.gca()
ax.add_patch(FancyBboxPatch((-0.05, .87),
width=.66, height=.165, clip_on=False,
boxstyle="square,pad=0", zorder=3,
facecolor='white', alpha=1.0,
transform=plt.gca().transAxes))
plt.text(-0.05, 1.02, " Pie Chart: plt.pie(...)\n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
transform=plt.gca().transAxes)
plt.text(-0.05, 1.01, "\n\n Make a pie chart of an array ",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=plt.gca().transAxes)
plt.show()
An more elaborate bar plot example
import numpy as np
import matplotlib.pyplot as plt
n = 16
X = np.arange(n)
Y1 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
Y2 = (1 - X / float(n)) * np.random.uniform(0.5, 1.0, n)
plt.bar(X, Y1, facecolor='#9999ff', edgecolor='white')
plt.bar(X, -Y2, facecolor='#ff9999', edgecolor='white')
plt.xlim(-.5, n)
plt.xticks(())
plt.ylim(-1, 1)
plt.yticks(())
# Add a title and a box around it
from matplotlib.patches import FancyBboxPatch
ax = plt.gca()
ax.add_patch(FancyBboxPatch((-0.05, .87),
width=.66, height=.165, clip_on=False,
boxstyle="square,pad=0", zorder=3,
facecolor='white', alpha=1.0,
transform=plt.gca().transAxes))
plt.text(-0.05, 1.02, " Bar Plot: plt.bar(...)\n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
transform=plt.gca().transAxes)
plt.text(-0.05, 1.01, "\n\n Make a bar plot with rectangles ",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=plt.gca().transAxes)
plt.show()
An example showing quiver with decorations.
import numpy as np
import matplotlib.pyplot as plt
n = 8
X, Y = np.mgrid[0:n, 0:n]
T = np.arctan2(Y - n/ 2., X - n / 2.)
R = 10 + np.sqrt((Y - n / 2.) ** 2 + (X - n / 2.) ** 2)
U, V = R * np.cos(T), R * np.sin(T)
plt.quiver(X, Y, U, V, R, alpha=.5)
plt.quiver(X, Y, U, V, edgecolor='k', facecolor='None', linewidth=.5)
plt.xlim(-1, n)
plt.xticks(())
plt.ylim(-1, n)
plt.yticks(())
# Add a title and a box around it
from matplotlib.patches import FancyBboxPatch
ax = plt.gca()
ax.add_patch(FancyBboxPatch((-0.05, .87),
width=.66, height=.165, clip_on=False,
boxstyle="square,pad=0", zorder=3,
facecolor='white', alpha=1.0,
transform=plt.gca().transAxes))
plt.text(-0.05, 1.02, " Quiver Plot: plt.quiver(...)\n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
transform=plt.gca().transAxes)
plt.text(-0.05, 1.01, "\n\n Plot a 2-D field of arrows ",
horizontalalignment='left',
verticalalignment='top',
size='large',
transform=plt.gca().transAxes)
plt.show()
Demoing imshow
import numpy as np
import matplotlib.pyplot as plt
def f(x, y):
return (1 - x / 2 + x ** 5 + y ** 3) * np.exp(-x ** 2 - y ** 2)
n = 10
x = np.linspace(-3, 3, 8 * n)
y = np.linspace(-3, 3, 6 * n)
X, Y = np.meshgrid(x, y)
Z = f(X, Y)
plt.imshow(Z, interpolation='nearest', cmap='bone', origin='lower')
plt.xticks(())
plt.yticks(())
# Add a title and a box around it
from matplotlib.patches import FancyBboxPatch
ax = plt.gca()
ax.add_patch(FancyBboxPatch((-0.05, .87),
width=.66, height=.165, clip_on=False,
boxstyle="square,pad=0", zorder=3,
facecolor='white', alpha=1.0,
transform=plt.gca().transAxes))
plt.text(-0.05, 1.02, " Imshow: plt.imshow(...)\n",
horizontalalignment='left',
verticalalignment='top',
size='xx-large',
transform=plt.gca().transAxes)
plt.text(-0.05, 1.01