目录
- 问题
- 示例
- 分析
问题
该文章已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3663 访问。
给定一个无重复元素的数组 candidates
和一个目标数 target
,找出 candidates
中所有可以使数字和为 target
的组合。
candidates
中的数字可以无限制重复被选取。
说明:
- 所有数字(包括
target
)都是正整数。 - 解集不能包含重复的组合。
输入: candidates = [2,3,6,7],
target = 7,
所求解集为: [ [7], [2,2,3] ]
输入: candidates = [2,3,5],
target = 8,
所求解集为: [ [2,2,2,2], [2,3,3], [3,5] ]
Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.
The same repeated number may be chosen from candidates unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
Input: candidates = [2,3,6,7],
target = 7,
A solution set is: [ [7], [2,2,3] ]
Input: candidates = [2,3,5],
target = 8,
A solution set is: [ [2,2,2,2], [2,3,3], [3,5] ]
示例
该文章已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3663 访问。
public class Program {
public static void Main(string[] args) {
var candidates = new int[] { 2, 3, 6, 7 };
var target = 7;
var res = CombinationSum(candidates, target);
ShowArray(res);
Console.ReadKey();
}
private static void ShowArray(List<IList<int>> candidates) {
foreach(var candi in candidates) {
foreach(var num in candi) {
Console.Write($"{num} ");
}
Console.WriteLine();
}
Console.WriteLine();
}
public static List<IList<int>> CombinationSum(int[] candidates, int target) {
var res = new List<IList<int>>();
var candi = new List<int>();
Combination(candidates, 0, target, candi, ref res);
return res;
}
public static void Combination(int[] candidates,
int start,
int target,
List<int> candi,
ref List<IList<int>> res) {
if(target < 0) return;
if(target == 0) {
res.Add(candi);
return;
}
for(var i = start; i < candidates.Length; i++) {
candi.Add(candidates[i]);
Combination(candidates, i, target - candidates[i], candi.ToList(), ref res);
candi.RemoveAt(candi.Count - 1);
}
}
}
以上给出1种算法实现,以下是这个案例的输出结果:
该文章已迁移至个人博客【比特飞】,单击链接 https://www.byteflying.com/archives/3663 访问。
2 2 3
7
分析
显而易见, 以上算法的时间复杂度为: O ( n 2 ) O(n^2) O(n2) 。