- USRP X440
东枫科技
fpga开发
产品概述USRPX440是EttusResearch推出的高性能、多通道、宽带软件定义无线电(SDR)系统。基于XilinxZynqUltraScale+RFSoC架构,它提供高密度、相干性的信号收发能力,帮助您快速构建雷达、电子战(EW)、卫星通信(SATCOM)及毫米波原型系统。核心特性8路独立可调谐Tx/Rx通道支持高达8路发射和8路接收,通道间时钟共享实现相位相干(同设备内< 1° RMS
- 分布式IO选型指南:2025年分布式无线远程IO品牌及采集控制方案详解
2501_91398178
分布式分布式IO模块远程IO模块
近年来,随着工业物联网(IIoT)、智能制造和工业4.0的深入发展,分布式无线远程IO模块在工业控制领域的应用愈发广泛。这种模块通过无线方式实现远程数据采集与控制,极大地提高了工业设施的灵活性和效率。2025年,分布式IO市场呈现出技术革新与品牌竞争加剧的态势。本文基于权威数据平台(如Statista、MarketsandMarkets、GrandViewResearch)的市场分析,全面解读分布
- Go-Faiss安装教程
LukJH
golangfaiss开发语言
Go-Faiss安装教程本文主要讲述如何解决以下问题autotunefaiss/c_api/AutoTune_c.h:Nosuchfileordirectory5|#include|^~~~~~~~~~~~~~~~~~~~~~~~~~1.正常安装这里是按照官网的说法来安装go-faiss。gitclonehttps://github.com/facebookresearch/faiss.gitcd
- CodeBLEU:面向代码合成的多维度自动评估指标——原理、演进与开源实践
大千AI助手
人工智能Python#OTHER人工智能神经网络机器学习大模型代码生成抽象语法树评估
“融合语法树与数据流,让代码质量评估超越n-gram匹配”CodeBLEU是由微软亚洲研究院(MicrosoftResearchAsia)与北京大学联合提出的代码合成评估指标,首次发表于arXiv2020(论文编号:2009.10297)。该指标针对传统自然语言评估方法(如BLEU)在代码任务中的局限性,创新性地融合抽象语法树(AST)匹配与数据流分析,成为代码生成、翻译与精炼任务的事实评估标准。
- LLM微调训练指南
小小怪 @
人工智能自然语言处理
模型选择策略开源LLM的选择需综合评估任务需求与资源限制:LLaMA-2(7B/13B/70B):商用友好,推荐使用HuggingFace格式的社区变体(如NousResearch版本)Mistral(7B):Apache2.0许可,在推理和数学任务表现突出Falcon(7B/40B):商业授权宽松,特别适合多轮对话场景硬件匹配参考:NVIDIA3090可微调7B模型(QLoRA),A100建议尝
- 牛津通识读本| Psychology7
Rita2219
ActiveNotPassiveLearnersResearchshowsthatallthelookingandlisteningthatbabiesdoisorganizedmentallyintocertaintypesofknowledgefromearlyinlife.Listeningtoandlookingatpeopleteachesbabiesabouthowpeoplebeha
- 将Detection 2模型实例分割功能集成到大模型后门攻击实验中的完整指南
神经网络15044
算法python深度学习人工智能神经网络算法图像处理
将Detection2模型实例分割功能集成到大模型后门攻击实验中的完整指南前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景与意义在计算机视觉领域,实例分割是一项关键任务,它不仅能识别图像中的物体类别,还能精确地分割出每个实例的像素区域。FacebookAIResearch开发的Detectron2框架提供了高效的
- Kimi-Researcher 技术实现深度解析
李昕壑
人工智能
Kimi-Researcher是一款基于端到端自主强化学习技术构建的智能研究助手,其核心技术在于通过单一模型自主决策和执行复杂研究任务,无需预设工作流程。它具备轻量化的长时记忆机制和潜在的多模态处理能力,能够高效地进行并行搜索和灵活的工具调用,从而完成从信息搜集、分析到报告生成的全过程。1.Kimi-Researcher核心工作机制概述Kimi-Researcher作为一款专注于深度研究的Agen
- 中国计算机学会(CCF)推荐学术会议-B(数据库/数据挖掘/内容检索):CIDR 2026
爱思德学术
数据分析系统架构数据库
CIDR2026TheConferenceonInnovativeDataSystemsResearch(CIDR)isasystems-orientedconference,complementaryinitsmissiontothemainstreamdatabaseconferenceslikeSIGMODandVLDB,emphasizingthesystemsarchitecturepe
- 中国计算机学会(CCF)推荐学术会议-C(计算机图形学与多媒体):MMM 2026
爱思德学术
信号处理图形渲染图像处理人工智能
MMM2026MMMisaleadinginternationalconferenceforresearchersandindustrypractitionersforsharingnewideas,originalresearchresultsandpracticalexperiencesfromallMMMrelatedareas.Theconferencecallsforresearchpa
- 中国计算机学会(CCF)推荐学术会议-A(人工智能):AAAI 2026
爱思德学术
人工智能机器学习自然语言处理数据挖掘
AAAI2026ThepurposeoftheAAAIconferenceseriesistopromoteresearchinArtificialIntelligence(AI)andfosterscientificexchangebetweenresearchers,practitioners,scientists,students,andengineersacrosstheentiretyo
- 中国计算机学会(CCF)推荐学术会议-A(数据库/数据挖掘/内容检索):ACM KDD 2026
爱思德学术
大数据人工智能数据挖掘
ACMKDD2026KDDisthepremierDataScienceandAIconference,hostingbothaResearchandanAppliedDataScienceTrack.TheconferencewilltakeplacefromAugust9to13,2026,inJeju,Korea.KDDhastwosubmissioncyclesperyear.Thisca
- 最新SCI期刊影响因子查询及中科院《国际期刊预警名单》
打酱油的工程师
存档资料期刊预警中科院
最新SCI期刊影响因子查询及投稿分析【LetPub】最新SCI期刊影响因子查询及投稿分析系统(2024-2025年)-LetPubThelatestmarketresearchnews,reports,insights&jobs|Thelatestmarketresearchnews,reports,insights&jobs|ResearchLive中科院《国际期刊预警名单》国际期刊预警名单-中
- AI人工智能大模型中——数据集就是一切 The dataset is everything
AI天才研究院
ChatGPT人工智能
文章目录人工智能模型中的“它”是数据集。The“it”inAImodelsisthedataset.2023年机器学习的现状TheStateofMLin2023ResearchCode研究代码LearnedStructures学习结构ComputeMultipliers计算乘数人工智能模型中的“它”是数据集。The“it”inAImodelsisthedataset.I’vebeenatOpenA
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- 2018-07-30不放水,不滑坡
露露风
今天其他的不聊,只说英语。今天学了3个音。分别是/ɜ:/,/g/,/ɔː/ː/ɜ:/像发“饿”的音,舌身平放,舌中部伸向硬腭,不接触硬腭,舌头肌肉紧张。双唇微微张开,口型与发i:音相似。/g/与/k/发音位置相同,声带振动。浊音。/ɔː/舌身后缩,双唇收圆。单词中/ɔː/后面有r字母时,则发/ɔr/音。无r时发/ɔː/原句:DoctorsinTokyoledtheresearchitexamine
- LLM4SR: A Survey on Large Language Models for Scientific Research
UnknownBody
LLMDailySurveyPaper语言模型人工智能自然语言处理
文章主要内容文章围绕大语言模型(LLMs)在科学研究中的应用展开,系统探讨了其在科研各关键阶段的作用、方法、挑战及未来方向。科学假设发现:LLMs生成科学假设的研究源于“基于文献的发现”和“归纳推理”。现有方法通过灵感检索策略、反馈模块等组件提升假设生成质量,相关基准测试分为基于文献和数据驱动两类,评估指标涵盖新颖性、有效性等。虽取得一定成果,但面临实验验证困难、依赖现有LLMs能力等挑战。实验规
- 互联网摸鱼日报(2025-07-10)
每日摸鱼大王
每日摸鱼新闻业界资讯
互联网摸鱼日报(2025-07-10)钛媒体盒马超永辉位列三甲,奥乐齐中国一年翻倍|钛媒体独家广汽菲克败走中国,合资“躺赢”时代落幕|钛度车库白牌才是县城的“救世主”抖音终于抢到了周杰伦爆火的AI4Research,被哈工大车万翔团队讲明白了罗马仕倒下,下一个会是安克吗?马来西亚,东南亚旅游新“一哥”?创造AI安全领域的AlphaGo时刻,Xbow获得7500万美元B轮融资罗马仕之死最卖座的脱口秀
- 【稀疏三维重建】Flash3D:单张图像重建场景的GaussianSplatting
杀生丸学AI
计算机视觉人工智能大模型稀疏三维重建立体几何单目深度估计
项目主页:https://www.robots.ox.ac.uk/~vgg/research/flash3d/来源:牛津、澳大利亚国立文章目录摘要1.引言2.相关工作3.方法3.1背景:从单个图像中重建场景3.2单目前向的多个高斯4.实验4.14.2跨域新视角合成4.3域内新视图合成摘要 Flash3D,一种通用的单一图像场景重建。模型从一个单目深度估计的“基础”模型开始,扩展到一个完整的三维形
- 人工智能发展简史——未来是属于AI人工智能的。
AI天才研究院
ChatGPTAI人工智能与大数据人工智能
目录人工智能发展简史第一章:起步期-20世纪50年代及以前1.1计算机象棋博弈(Programmingacomputerforplayingchess)1.2图灵测试(TuringTest)1.3达特茅斯学院人工智能夏季研讨会(DartmouthSummerResearchConferenceonArtificialIntelligence)1.4感知机(Perceptrons)第二章:第一次浪潮
- AI办公Agent之Skywork Super Agents
NeilNiu
AI+开源项目人工智能
5月22日,昆仑万维科技股份有限公司(以下简称“昆仑万维”)面向全球市场同步发布天工超级智能体(SkyworkSuperAgents)。官网地址:https://www.tiangong.cn/这个工具主要采用了AIagent架构和DeepResearch技术,一站式生成文档、PPT、表格(excel)、网页、播客和音视频多模态内容。它具有强大的DeepResearch能力,在GAIA榜单排名全球
- PyTorch 详细安装教程及核心API使用指南
慕婉0307
pytorchpytorch人工智能python
一、PyTorch简介PyTorch是由FacebookAIResearch(FAIR)于2016年开发的开源深度学习框架,现已成为学术界和工业界最受欢迎的深度学习工具之一。其核心优势在于采用了动态计算图(DynamicComputationGraph,又称"define-by-run"机制),这使得开发者能够像编写普通Python代码一样构建神经网络,并在运行时动态调整计算图结构,大大提高了研究
- 10.2 ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力chatgpt人工智能机器学习语言模型
ChatGPT自动生成训练数据实战:37.2%准确率提升秘籍使用ChatGPT自动设计生成训练数据的Prompt在大模型微调场景中,高质量训练数据的获取往往是制约模型效果的核心瓶颈。根据2023年GoogleResearch的实证研究,使用GPT-4生成的合成数据对LLaMA2进行微调,能达到人工标注数据85%的效果水平。本章将揭秘如何通过ChatGPT自动生成适配ChatGLM3的微调数据。一、
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- 什么是神经网络架构搜索(NAS, Neural Architecture Search),如何写对应的python程序代码呢
小桥流水---人工智能
算法深度学习Python程序代码神经网络架构python
一、什么是神经网络架构搜索(NAS,NeuralArchitectureSearch)神经网络架构搜索(NAS,NeuralArchitectureSearch)是一种用于自动化设计神经网络架构的技术。传统的神经网络模型架构设计通常依赖于专家经验和大量试错,而NAS通过算法自动搜索网络架构,以发现最适合特定任务的神经网络设计。NAS可以极大地减少人工调参的时间和精力,并且在某些情况下能够找到比手工
- FAISS 简介及其与 GPT 的对接(RAG)
言之。
AIfaissgpteasyui
什么是FAISS?FAISS(FacebookAISimilaritySearch)是FacebookAI团队开发的一个高效的相似性搜索和密集向量聚类的库。它主要用于:大规模向量相似性搜索高维向量最近邻检索向量聚类https://github.com/facebookresearch/faissFAISS特别适合处理高维向量数据,能够快速找到与查询向量最相似的向量,广泛应用于推荐系统、图像检索、自
- 导师要求一天完成综述,我7分钟搞定——打造一个全本地DeepResearch助手
小洛~·~
人工智能深度学习chatgptgptAI写作
1.项目背景LocalDeepResearcher是一个本地化运行的AI研究助手,旨在通过结合大语言模型(LLM)和搜索工具,实现自动化深度研究并生成结构化报告。该项目由LangChainAI开发,支持本地模型(例如通过Ollama运行的deepseek-r1:7b)和云端模型(例如Claude、GPT),并集成了多种搜索引擎(如Tavily、DuckDuckGo)。其本地优先的设计确保了数据隐私
- Promptify:简化NLP任务的高效工具箱
金斐茉
Promptify:简化NLP任务的高效工具箱PromptifyPromptEngineering|PromptVersioning|UseGPTorotherpromptbasedmodelstogetstructuredoutput.JoinourdiscordforPrompt-Engineering,LLMsandotherlatestresearch项目地址:https://gitcod
- 2013年EI 新目录中新增的期刊
h_liuage
投稿期刊论文投稿
**【转载】2013年EI新目录中新增的期刊**斜体样式3DResearch2092673020926731ACSSustainableChemistryandEngineering21680485ActaInformatica0001590314320525AdvancesinOpticsandPhotonics19438206AdvancesinRadioScience168499651684
- Google的OR-Tools:运筹学与优化的强大工具
A小庞
算法调度算法or-toolsGoogle
在当今数字化时代,优化问题无处不在,从物流配送到生产计划,从资源调度到交通流量优化,这些看似复杂的问题都可以通过专业的工具来解决。Google的OR-Tools正是这样一款强大的运筹学和优化工具包,它为开发者提供了丰富的算法和功能,帮助解决各种复杂的优化问题。一、OR-Tools简介OR-Tools(OperationsResearchTools)是Google开源的一个用于组合优化的软件套件,旨
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag