- 代码随想录|图论理论基础
1.图的种类(有向图和无向图)有向图:图中边有方向无向图:图中边无方向加权有向图:图中边是有权值和方向的,无向图也是如此2.度(无向图中有几条边连接该节点,该节点就有几度)出度:从该节点出发的边的个数入度:指向该节点边的个数3.连通性(在图中表示节点的联通情况,我们称之为连通性)连通图:在无向图中,任何两个节点都是可以到达的(可以借助其他节点)非连通图:有节点不能到达其他节点强连通图:在有向图中,
- 深度优先在数据结构与算法中的独特作用
AI天才研究院
AI大模型企业级应用开发实战Agent实战AI人工智能与大数据深度优先算法ai
深度优先在数据结构与算法中的独特作用关键词:深度优先搜索、数据结构、算法设计、图遍历、递归、迭代、问题求解摘要:深度优先搜索(DFS)是计算机科学中最重要的图遍历算法之一,其通过"尽可能深"的探索路径的策略,在树与图的结构分析、问题求解中展现出独特价值。本文从DFS的核心原理出发,系统解析其在数据结构中的实现方式、算法设计中的问题建模方法,结合数学模型分析时间空间复杂度,通过迷宫求解、强连通分量检
- 《强连通分量(tarjan算法)》基础概念
文章目录一、算法概述二、算法思路三、伪代码实现1.类定义与数据结构2.主程序示例四、算法解释1.初始化阶段2.DFS遍历与时间戳更新3.强连通分量识别4.示例演示五、复杂度分析一、算法概述定义:Tarjan算法是一种用于在有向图中求解强连通分量(StronglyConnectedComponent,SCC)的高效算法。强连通分量指有向图中任意两顶点互相可达的最大子图。核心思想:基于深度优先搜索(D
- 【无标题】路径着色问题的革命性重构:拓扑色动力学模型下的超越与升华
2301_81062744颜斌
拓扑学
路径着色问题的革命性重构:拓扑色动力学模型下的超越与升华一、以色列路径着色模型的根本局限```mermaidgraphTBA[以色列路径着色模型]-->B[强连通约束]A-->C[仅实边三角剖分]A-->D[静态色彩分配]B-->E[无法描述非相邻关系]C-->F[忽略量子隧穿]D-->G[缺乏动力学机制]```**核心缺陷**:1.**维度塌缩**:将三维色彩动力学压缩为二维静态映射$$\mat
- 26考研408——疑难杂症、好题思考题分享汇总~
408答疑+v:18675660929
26考研408——疑难杂症好题思考题分享~考研笔记数据结构算法c语言
408答疑更新日志时间:2025-4-20内容:深度解析树的结点关系计算深度解析哈夫曼树路径问题深度解析无向图连通分量深度解析平衡二叉树的删除深度解析二叉平衡树的最大深度时间:2025-4-20内容:B树失败结点个数计算好题分享树结构与序列插入好题分享带权无向图好题分享图的遍历好题分享时间:2025-5-11内容:树与二叉树转换好题分享无向图连通图好题分享有向图强连通分量好题分享(一)有向图强连通
- 【第十六届 蓝桥杯 省 C/Python A/Java C 登山】题解
慕容青峰
蓝桥杯蓝桥杯c语言python算法c++sublimetext
题目链接:P12169[蓝桥杯2025省C/PythonA/JavaC]登山思路来源一开始想的其实是记搜,但是发现还有先找更小的再找更大的这种路径,所以这样可能错过某些最优决策,这样不行。于是我又想能不能从最大值出发往回搜,手玩了一下发现其实和记搜没什么区别,无非是把边给反向了。那可能的做法就是强连通分量?我当时板子都掏出来了,但是模拟了一番之后就发现可以用并查集。下面是正文。算法:并查集由于行列
- 蓝桥杯备战资料从0开始!!!(python B组)(最全面!最贴心!适合小白!蓝桥云课)图论
手可摘星chen.
蓝桥杯python图论
注:你的关注,点赞,评论让我不停更新一、蓝桥杯图论常见题型最短路径问题单源最短路径(Dijkstra算法)多源最短路径(Floyd-Warshall算法)带有负权边的最短路径(Bellman-Ford算法)最小生成树(MST)Kruskal算法(并查集+贪心)Prim算法(优先队列优化)遍历与连通性DFS/BFS求连通块强连通分量(Tarjan算法)网络流与匹配二分图匹配(匈牙利算法)最大流问题(
- 图论的学习笔记(1)
sml259(劳改版)
图论笔记数据结构拓扑排序
目录一、图的存储1、邻接矩阵2、邻接表二、连通图和强连通图1、连通图(无向图)2、强连通图(有向图)三、图的判环1、无向图判环2、有向图判环(重点)题目描述输入格式输出格式输入输出样例说明/提示一、图的存储1、邻接矩阵如果图的边比较密集(稠密图),或者图的顶点较少(小于1000),那么这个图一般用邻接矩阵来表示。空间复杂度O(V^2),其中V是顶点数目。2、邻接表如果图的边比较稀疏(稀疏图),或者
- 【数据结构】图解图论:度、路径、连通性,五大概念一网打尽
蒙奇D索大
保姆级教学数据结构(DS)数据结构图论算法考研改行学it
图的基本概念导读一、顶点的度二、路径三、距离四、连通五、子图结语**内容总结****下期预告****互动提醒**导读大家好,很高兴又和大家见面啦!!!在上一篇中,我们初步认识了图的定义与分类。今天,我们将深入探讨图的核心概念:•顶点的度(无向图与有向图的入度、出度)•路径与回路(简单路径、简单回路、路径长度的计算)•距离与连通性(连通图、强连通图的判断)•子图与连通分量(生成子图、极大连通子图)通
- 408第二轮复习 数据结构 第六章 图
一只大小菜
数据结构图论
408第二轮复习数据结构第六章图的定义图的存储图的定义简单图:无自环和重边,对于简单完全图来说|E|的取值0到n(n-1)/2,有向图是0到n(n-1)子图:如果Va是Vb的子集且Ea是Eb的子集则称Ga是Gb的子图连通、连通图和连通分量:无向图中任意两点都是连通为连通图,极大连通子图称为连通分量强连通分量、强连通分量,在有向图中任意两点都是连通为强连通图、极大连通子图称为强连通分量生成树、生成森
- 信息学奥赛一本通 1514:【例 2】最大半连通子图 | 洛谷 P2272 [ZJOI2007] 最大半连通子图
君义_noip
洛谷题解信息学奥赛一本通题解图论C++信息学奥赛
【题目链接】ybt1514:【例2】最大半连通子图洛谷P2272[ZJOI2007]最大半连通子图【题目考点】1.图论:强连通分量缩点2.图论:拓扑排序有向无环图动规【解题思路】对于图中任意两顶点u、v,满足u到v或v到u有路径,该图就是单向连通图。本题中的半连通图,指的就是单向连通图。导出图,指的是选择顶点之间的所有边也都必须选择。该题求图中最大的半连通子图,而且该图必须是导出图,也就是选择顶点
- Leetcode 刷题笔记1 图论part01
平乐君
leetcode笔记图论
图论的基础知识:图的种类:有向图(边有方向)、无向图(边无方向)、加权有向图(边有方向和权值)度:无向图中几条边连接该节点,该节点就有几度;有向图中每个节点有入度和出度连通性:在无向图中,任何两个节点都是可以到达的,称之为连通图,否则称之为非连通图在有向图中,热河两个节点是可以相互到达的,称之为强连通图联通分量:在无向图中的极大连通子图称之为该图的一个连通分量强连通分量:有向图中极大强连通子图称之
- 笔记:代码随想录算法训练营day56:图论理论基础、深搜理论基础、98. 所有可达路径、广搜理论基础
jingjingjing1111
笔记
学习资料:代码随想录连通图是给无向图的定义,强连通图是给有向图的定义朴素存储:二维数组邻接矩阵邻接表:list基础知识:C++容器类|菜鸟教程深搜是沿着一个方向搜到头再不断回溯,转向;广搜是每一次搜索要把当前能够得到的方向搜个遍深搜三部曲:传入参数、终止条件、处理节点+递推+回溯98.所有可达路径卡码网题目链接(ACM模式)先是用邻接矩阵,矩阵的x,y表示从x到y有一条边主要还是用回溯方法遍历整个
- 考研系列-数据结构第六章:图(上)
Nelson_hehe
#数据结构笔记数据结构图的存储邻接表邻接矩阵十字链表法图的基本操作
目录写在前面一、图的基本概念1.图的定义2.图的种类(1)无向图、有向图(2)简单图、多重图3.顶点的度4.顶点与顶点之间关系描述5.图的连通性(1)连通图、强连通图(2)连通分量、强连通分量(3)生成树、生成森林6.带权图7.几种特殊形态的图(会识别、掌握特性)8.总结9.习题总结(1)选择题(2)简答题二、图的存储1.邻接矩阵(1)存储结构(存储非带权图)(2)邻接矩阵基本性质(3)邻接矩阵存
- 《代码随想录第五十五天》——图论基础、深度搜索理论基础、所有可达路径、广度搜索理论基础
-Michelangelo-
算法刷题图论
《代码随想录第五十五天》——图论基础、深度搜索理论基础、所有可达路径、广度搜索理论基础本篇文章的所有内容仅基于C++撰写。1.图论基础1.1概念种类分为有向图和无向图,无权值图和加权图度有几条便连接节点,该节点就有几度有向图中,出度是节点指向其他节点的边个数;入度是其他节点指向该节点的边个数连通性节点互相到达称为连通图,节点不能互相到达称为非连通图。在有向图中,所有节点可以相互到达被称为强连通图。
- [BZOJ1093][ZJOI2007]最大半连通子图(Tarjan+拓扑排序+DP)
xyz32768
BZOJUOJLOJ拓扑排序Tarjan
首先得到,一个强连通分量一定是半连通的。把强连通分量缩点之后,可以得到一个拓扑图。下面,sze[u]为新图中点u所对应强连通分量的大小。缩点之后,就很容易得出,一个半连通子图一定是拓扑图中的一条链,半连通子图的大小为这条链上所有点的sze之和。所以,现在就是要求这个拓扑图的最长链(sze之和最大)。考虑按照拓扑排序DP,f[u]表示以u为终点的最长链长度:1、对于点u,如果点u的入度为0,则f[u
- [ZJOI2007]最大半连通子图【tarjan缩点】【拓扑排序+DP】
ssl_fuyang
tarjanDP拓扑排序图论算法
>LinkluoguP2272ybtoj最大半连通子图>DescriptionN≤105,M≤106N\le10^5,M\le10^6N≤105,M≤106>解题思路强连通子图一定是半连通子图,所以考虑到把这张图进行缩点然后图就变成了一个DAG这时就会发现,题目要求求的最大半连通子图其实就是DAG上的一条链(如果是两条链组合的话,不满足要求)要注意的是,缩点以后建边要注意判重,建重边的话会似的方案
- YbtOJ 强连通分量课堂过关 例1 有向图缩点【Tarjan】【DP】【拓扑排序】
JA_yichao
题解YbtOJ专项练习题#强连通分量
思路这道题首先搞一个TarjanTarjanTarjan,求出所有强连通分量。然后就缩点,具体做法是枚举每条边然后判断这条边上的点在不在同一个强连通分量上,不在就连边。然后就做一个DP+拓扑排序,边拓扑边DP,f[y]=max(f[y],f[x]+cnt[y])f[y]=\max(f[y],f[x]+cnt[y])f[y]=max(f[y],f[x]+cnt[y]);代码#include#inc
- 100种算法【Python版】第38篇—— Tarjan算法
AnFany
算法python开发语言Tarjan算法群体分析
本文目录1算法说明2算法示例:社交群体分析3算法示例:交通路网中的强连通分量识别4算法应用1算法说明Tarjan算法由计算机科学家RobertTarjan于1972年提出,目的是在有向图中有效地找到强连通分量(StronglyConnectedComponents,SCC)。强连通分量是指图中一个最大子图,其中任意两个节点之间都有路径相互可达。Tarjan算法是基于深度优先搜索(DFS)的一种高效
- Python实现强连通分量算法——Tarjan算法
NoABug
算法深度优先python
Python实现强连通分量算法——Tarjan算法Tarjan算法是一种基于深度优先搜索(DFS)的强连通分量(SCC)查找算法,由RobertTarjan在1972年提出。它采用了栈(Stack)数据结构来记录已发现但未处理完的节点,并通过对每个节点进行DFS遍历来寻找强连通分量。以下是Python实现的Tarjan算法的完整源码:#-*-coding:utf-8-*-deftarjan(gra
- 代码随想录算法训练营DAY56|图论理论基础、98. 所有可达路径、深搜广搜基础
阿緑
代码随想录打卡算法图论
图论理论基础强连通图是在有向图中任何两个节点是可以相互到达在无向图中的极大连通子图称之为该图的一个连通分量。98.所有可达路径defdfs(graph,a,n,path,result):ifa==n-1:result.append(('').join(path[:]))forjinrange(N):ifgraph[a][j]:path.append(str(j+1))dfs(graph,j,n,p
- 代码随想录算法训练营day64 | 98. 所有可达路径
sunflowers11
代码随想录二刷算法
图论理论基础1、图的种类整体上一般分为有向图和无向图。加权有向图,就是图中边是有权值的,加权无向图也是同理。2、度无向图中有几条边连接该节点,该节点就有几度在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。3、连通性在图中表示节点的连通情况,我们称之为连通性连通图和强连通图在无向图中,任何两个节点都是可以到达的,我们称之为连通图。如果有节点不能到达其他节点,
- Day44 | 图论理论基础 98. 所有可达路径
086小包字
图论算法数据结构java
语言Java图论理论基础整体上一般分为有向图和无向图有向图就是有箭头的,无向图就是没有方向的。有几条连线就是有几个度。在有向图中,每个节点有出度和入度。出度:从该节点出发的边的个数。入度:指向该节点边的个数。在无向图中,任何两个节点都是可以到达的,我们称之为连通图。在有向图中,任何两个节点是可以相互到达的,我们称之为强连通图。98.所有可达路径98.所有可达路径题目给定一个有n个节点的有向无环图,
- 强连通分量——tarjan算法缩点
小陈同学_
图论算法图论c++
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- 强连通分量-tarjan算法缩点
小陈同学_
算法图论数据结构
一.什么是强连通分量?强连通分量:在有向图G中,如果两个顶点u,v间(u->v)有一条从u到v的有向路径,同时还有一条从v到u的有向路径,则称两个顶点强连通(stronglyconnected)。如果有向图G的每两个顶点都强连通,称G是一个强连通图。有向图的极大强连通子图,称为强连通分量。简单点说就是:如果一个有向图中,存在一条回路,所有的结点至少被经过一次,这样的图为强连通图。在强连图图的基础上
- ACM算法分类(要学习的东西还很多)
还是太年轻
ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分
- ACM算法目录
龍木
ACM所有算法数据结构栈,队列,链表哈希表,哈希数组堆,优先队列双端队列可并堆左偏堆二叉查找树Treap伸展树并查集集合计数问题二分图的识别平衡二叉树二叉排序树线段树一维线段树二维线段树树状数组一维树状数组N维树状数组字典树后缀数组,后缀树块状链表哈夫曼树桶,跳跃表Trie树(静态建树、动态建树)AC自动机LCA和RMQ问题KMP算法图论基本图算法图广度优先遍历深度优先遍历拓扑排序割边割点强连通分
- 史上最系统的的竞赛图讲解:学透竞赛图看这一篇就够了!
准确、系统、简洁地讲算法
算法图论
文章目录定义性质一、兰道定理(竞赛图的判定)比分序列:将每个点的出度从小到大排序的序列。定理内容:定理证明拓展二、竞赛图缩点后拓扑序成链状,拓扑序小的点向所有拓扑序比它大的点连边。(1)与SCC,拓扑序相关推论:1.根据成链状容易发现当不存在位置i满足以下条件,图为强连通图。2.在同一个SCC中在比分序列上是一个区间,根据比分序列可以完成拓扑排序。(无需建图)(2)与三元环和n>=3元环相关a.竞
- POJ 2117 Electricity 题解 Tarjan 割点
kaiserqzyue
算法题目算法图论c++
题目链接:POJ2117Electricity题目描述:给定一张无向图,问删除一个结点后最多会有多少个强连通分量。题解:我们用scc表示初始的图中有多少个强连通分量,该值可以通过DFS计算出来。接下来我们只需要计算出删除每个割点会增加的强连通分量个数cnt即可,答案即为cnt+ans,对于一个强连通分量中的非根结点,用son表示有多少个子结点能够返回到当前结点或者当前结点之前遍历的结点,那么不难发
- POJ 1523 SPF题解 Tarjan 割点
kaiserqzyue
算法题目c++算法图论
题目链接:POJ1523SPF题目描述:给定一张连通的无向图,问哪些结点是割点,分别删除各个割点时会产生几个强连通分量。题解:求割点可以通过Tarjan算法来解决,我们接下来考虑删除一个割点后会产生多少个联通块。在Tarjan算法中,我们判断一个点是否是割点是通过其子结点能否回到遍历过的结点来判断。如果当前遍历的结点存在一个子结点不能够回到已经遍历过的结点,那么当前遍历的结点便是一个割点(这样的依
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam