- YOLOv4 介绍及其模型优化方法
1、YOLOv4介绍2020年4月,YOLOv4在悄无声息中重磅发布,在目标检测领域引起广泛的讨论。在YOLO系列的原作者JosephRedmon宣布退出CV领域后,表明官方不再更新YOLOv3。但在过去的两年中,AlexeyAB继承了YOLO系列的思想和理念,在YOLOv3的基础上不断进行改进和开发,于今年4月发布YOLOv4,并得到了原作者JosephRedmon的承认。YOLOv4可以使用传
- 2020-10-30
Victor Zhong
AI框架人工智能深度学习机器学习
极片缺陷检测模型验证报告:1:数据准备训练集:326张验证集:81张2:模型准备模型:yolov33:训练参数设置epochs:4603batch_size:8device:RTX2080Ticfg:yolov3-spp-jp4:验证结果5:检测结果部分检测结果图,全部结果图见文件夹result:6:结果分析a.训练数据中,某一类缺陷标注数量相对较少,影响检测该类的目标;可以通过数据增强的方法或增
- 深度学习目标检测之YOLOv3实战(二)训练自己的图像数据
郎郎不会飞
深度学习目标识别python深度学习
深度学习目标检测之YOLOv3实战(二)训练自己的图像数据数据集准备数据集预处理原demo修改数据集训练目标检测补充二零二零年的大年初一,给大家拜个年,祝大家鼠年吉祥,万事如意,趁着喜气,把Yolov3训练自己的数据过程,记录一下,共勉共进。同样,无人机搭载山狗拍摄的视频,目标检测的种类是模型tank和airplane,部分效果图镇贴:数据集准备首先需要将自己的数据集准备好,不同场景下的目标数据尽
- 目标检测——YOLO11算法解读
lishanlu136
#目标检测目标检测YOLO11YOLO系列算法解读
作者:Ultralytics公司代码:https://github.com/ultralytics/ultralyticsYOLO系列算法解读:YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算法解读、YOLOv7算法解读、
- YOLOv4 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv4正负样本划分详解一、前言在目标检测中,正负样本划分是训练过程中的关键环节,它决定了哪些预测框参与损失计算,从而影响模型的学习效果。YOLOv4在YOLOv3的基础上进行了改进,包括:使用CSPDarknet53主干网络;引入PANet特征融合结构;支持Mosaic数据增强;使用CIoULoss和DIoU-NMS;但在正样本划分逻辑上,YOLOv4保持了与YOLOv3类似的设计方式,并
- YOLO的作者们
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
YOLO之父JesephRedmon,他创建了yolov1、yolov2、yolov3三个版本,但是在2020年2月份却宣布退出CV学术界、停止一切关于计算机视觉的研究、原因是自己的开源算法已经用在军事和隐私问题上,这对他的道德造成了巨大的考验,他拒绝AI算法用于军事和隐私窥探。而在这2个月之后,另一位曾经参与YOLO项目维护的大神AlexeyBochkovskiy,在arXiv上提交了YOLOv
- YOLOv3 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv3正负样本划分详解一、前言在目标检测任务中,正负样本的划分是训练过程中的关键环节。它决定了哪些预测框参与位置回归、分类损失和置信度损失。YOLOv3在YOLOv2的基础上引入了多尺度预测和更精细的AnchorBoxes匹配策略,使得正样本的选择更加合理,提高了模型的召回率和定位精度。本文将基于以下来源进行解析:YOLOv3:AnIncrementalImprovement(论文原文)A
- YOLOv4 改进点详解
要努力啊啊啊
计算机视觉YOLO目标检测计算机视觉算法
✅YOLOv4改进点详解一、前言YOLOv4是目标检测领域的一次重大升级,由AlexeyBochkovskiy等人在论文《YOLOv4:OptimalSpeedandAccuracyofObjectDetection》中提出。与YOLOv3相比,YOLOv4引入了多个结构优化和训练策略改进,在保持实时性的同时进一步提升了模型的精度和鲁棒性。本文将严格按照以下来源进行说明:✅论文原文:YOLOv4:
- 算法在嵌入式端的部署与优化
早日退休!!!
硬件算法嵌入式硬件
算法在嵌入式端的部署与优化前言理论1.参考资源2.其他1.将深度学习模型移植到嵌入式端时,提高推理速度的方法2.深度学习模型移植到嵌入式端的主要流程3.假设将已经训练好的目标检测模型(比如YOLOv3)移植到树莓派4B这样一款嵌入式设备上,并且需要保证推理速度达到实时。具体流程如下4.在树莓派上使用ncnn推理引擎,可以采取以下措施提高推理速度5.先进行模型压缩再用推理模型部署是一种常见的深度学习
- YOLOv3目标检测实战
宁安我
YOLO目标检测人工智能
YOLOv3目标检测实战:从理论到代码实现目录YOLOv3目标检测实战:从理论到代码实现1.引言2.YOLOv3的核心原理2.1网络结构2.2锚框(AnchorBoxes)2.3损失函数2.4预测流程3.案例:使用YOLOv3进行目标检测3.1数据集准备3.2模型定义3.2.1Darknet-53主干网络3.2.2YOLOv3检测头3.3训练与优化3.3.1损失函数3.3.2训练脚本3.4模型推理
- # YOLOv3:基于 PyTorch 的目标检测模型实现
www_pp_
YOLOpytorch目标检测
YOLOv3:基于PyTorch的目标检测模型实现引言YOLOv3(YouOnlyLookOnce)是一种流行的单阶段目标检测算法,它能够直接在输入图像上预测边界框和类别概率。YOLOv3的优势在于其高效性和准确性,使其在实时目标检测任务中表现出色。本文将详细介绍如何使用PyTorch实现YOLOv3模型,并提供完整的代码实现。1.YOLOv3简介YOLOv3是YOLO系列算法的第三个版本,它在前
- YOLOv3 目标检测算法深度解析
mozun2020
DL1:深度学习YOLO目标检测算法计算机视觉人工智能目标识别
YOLOv3目标检测算法深度解析一、算法原理与核心创新1.1算法设计哲学YOLOv3(YouOnlyLookOnceversion3)作为YOLO系列的第三代算法,延续了单阶段检测范式,通过端到端的回归策略实现实时目标检测。其核心设计目标是在保持检测速度优势的同时,显著提升多尺度目标检测能力,尤其针对小目标检测和复杂场景优化。1.2关键技术创新点1.2.1Darknet-53骨干网络残差连接:引入
- **深度学习之Keras-DIOU-YOLOv3: 更精确的目标检测利器**
许煦津
深度学习之Keras-DIOU-YOLOv3:更精确的目标检测利器去发现同类优质开源项目:https://gitcode.com/在这个数字化时代,目标检测是计算机视觉领域的一个重要组成部分,广泛应用于自动驾驶、视频监控、图像理解等多个场景。是一个基于Keras实现的改进版YOLOv3模型,它引入了DIOU(Distance-Intersection-over-Union)损失函数,旨在提高目标定
- 探秘PyTorch_YOLOv3:高效目标检测的利器
高慈鹃Faye
探秘PyTorch_YOLOv3:高效目标检测的利器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于PyTorch实现的目标检测框架,它采用了YOLOv3算法,该算法由JosephRedmon等人在2018年提出,以其实时性、高精度和广泛的适应性而备受关注。该项目致力于提供一个简单易用且高效的YoloV3实现,让用户能够轻松地进行目标检测任务。技术分析YOLOv3
- 机器学习、图像识别、视觉识别框架的对比表:
芯知社区
机器学习人工智能
以下是机器学习、图像识别、视觉识别框架的对比表:特性TensorFlowPyTorchOpenCVGoogleCloudVisionAPIYOLOv3Halcon开发语言Python,C++等Python,C++等C++,Python,Java等通过REST和RPCAPI调用Python,C++等C,C++,C#,VisualBasic等应用场景机器学习、深度学习、图像处理等机器学习、深度学习、计
- YOLO系列模型简介
西北风^_^
大模型YOLO
YOLO(YouOnlyLookOnce)系列模型是用于目标检测的一组深度学习模型,以其快速且高效的特点著称。该系列模型由JosephRedmon等人开发,自2016年的YOLOv1发布以来,已经经历了多个版本的迭代和发展,包括YOLOv2、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7及最新的YOLOv8等。每个版本都在前一代的基础上进行了改进和优化,提升了模型的速度和准确
- 旋转目标检测:FCOS: Fully Convolutional One-Stage Object Detection【方法解读】
沉浸式AI
《AI与SLAM论文解析》目标检测人工智能计算机视觉论文解读旋转目标检测
FCOS:全卷积单阶段目标检测我们提出了一种全卷积单阶段目标检测器(FCOS),以逐像素预测的方式解决目标检测问题,类似于语义分割。目前几乎所有的最先进目标检测器,如RetinaNet、SSD、YOLOv3和FasterR-CNN,都依赖于预定义的锚框。相反,我们提出的FCOS检测器是无锚框的,同时也是无候选区域的。通过消除预定义的锚框集,FCOS完全避免了与锚框相关的复杂计算,如训练期间计算重叠
- 经典的YOLOv3和YOLOV5算法详解及代码复现
清风AI
深度学习算法详解及代码复现YOLO算法yolov3yolov5计算机视觉人工智能
YOLO的基本原理YOLO(YouOnlyLookOnce)是一种革命性的目标检测算法,它巧妙地将复杂的检测问题转化为回归问题。这种方法的核心在于将输入图像划分为S×S网格,每个网格负责预测其内部的物体位置和类别。具体来说,每个网格需要预测(B×5+C)个值,其中B代表边界框数量,C为类别数。最终,模型输出一个S×S×(B×5+C)大小的张量。YOLO的一个关键创新是使用非极大值抑制(NMS)算法
- YOLOv3 推理与后处理模块源码解析
LIUDAN'S WORLD
YOLO系列教程YOLO人工智能目标检测
一、YOLOv3模型推理过程源码解析推理过程指的是将输入图像送入训练好的YOLOv3模型,得到模型输出的预测结果。1.输入图像预处理(Preprocessing)在将图像送入模型之前,通常需要进行一系列的预处理操作,以使其符合模型的输入要求。常见的预处理步骤包括:图像缩放(Resizing):将输入图像缩放到模型训练时所使用的尺寸,例如常见的416x416或608x608。这通常涉及到保持图像的宽
- 基于深度学习与YOLOv的人脸表情识别方法研究
源码空间站TH
深度学习人工智能
内容概要:文章探讨了基于深度学习的人脸表情识别技术,重点介绍了YOLOv3算法的应用。通过结合YOLOv3的实时检测能力和传统的分类器方法,实现了一个高效的人脸表情识别系统。文中详细讨论了YOLOv3的工作原理,数据预处理方法,训练与测试流程,并展示了系统的应用场景,如图片识别、视频识别和实时识别等。适合人群:计算机视觉研究人员、深度学习爱好者和相关领域的工程师。使用场景及目标:适用于人机交互、在
- YOLOv3预训练权重——开启目标检测的快捷之门
毕昕露Lionel
YOLOv3预训练权重——开启目标检测的快捷之门【下载地址】yolov3预训练权重资源yolov3预训练权重资源欢迎来到YOLOv3预训练权重的下载页面!本仓库提供YOLOv3模型的预训练权重文件,旨在帮助开发者和研究人员快速启动目标检测项目项目地址:https://gitcode.com/open-source-toolkit/a7417在追求高效、准确的目标检测之旅中,YOLOv3预训练权重无
- YOLOv3实践教程:使用预训练模型进行目标检测
LIUDAN'S WORLD
YOLO系列教程YOLO深度学习计算机视觉人工智能
目录简介环境准备获取预训练模型图像目标检测视频目标检测模型性能优化常见问题解答进阶学习路径简介YOLOv3(YouOnlyLookOnceversion3)是一种高效的实时目标检测算法,由JosephRedmon和AliFarhadi于2018年提出。与传统的目标检测方法相比,YOLO将目标检测视为单一的回归问题,直接从完整图像预测边界框及其类别概率,使其成为速度和准确性之间平衡的优秀选择。本教程
- 复现deep_sort_yolov3--demo.py
聿默
目标跟踪tensorflowkeras
0.环境opencv-python==4.1.0.25/4.1.2.30Pillowscikit-learn==0.19.2numpy==1.15.0keras==2.2.4tensorflow==1.12.0imutils1.修改1.1在deep_sort添加videocaptureasync.pyimportthreadingimportcv2classVideoCaptureAsync:de
- 探索MobileNet-Yolo:轻量级的移动端目标检测神器
施刚爽
探索MobileNet-Yolo:轻量级的移动端目标检测神器MobileNet-YoloMobileNetV2-YoloV3-Nano:0.5BFlops3MBHUAWEIP40:6ms/img,YoloFace-500k:0.1Bflops420KB:fire::fire::fire:项目地址:https://gitcode.com/gh_mirrors/mo/MobileNet-Yolo项目简
- PyTorch-YOLOv3 安装和配置指南
劳蕾令
PyTorch-YOLOv3安装和配置指南PyTorch-YOLOv3eriklindernoren/PyTorch-YOLOv3:是一个基于PyTorch实现的YOLOv3目标检测模型。适合用于需要实现实时目标检测的应用。特点是可以提供PyTorch框架下的YOLOv3模型实现,支持自定义模型和数据处理流程。项目地址:https://gitcode.com/gh_mirrors/py/PyTor
- YOLO_v3_PyTorch: 基于PyTorch的YOLOv3实现指南
吕曦耘George
YOLO_v3_PyTorch:基于PyTorch的YOLOv3实现指南YOLO_v3_PyTorch使用PyTorch实现基于YOLOv3的目标检测器项目地址:https://gitcode.com/gh_mirrors/yo/YOLO_v3_PyTorch项目介绍YOLO_v3_PyTorch是一个简洁的PyTorch版本YOLOv3框架,旨在提供对YOLOv3目标检测算法的支持,包括训练、推
- 【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
牙牙要健康
目标检测深度学习目标检测pytorch
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解文章目录【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解前言YOLOV3的模型结构YOLOV3模型的基本执行流程YOLOV3模型的网络参数YOLOV3的核心思想前向传播阶段反向传播阶段总结前言YOLOV3是由华盛顿大学的JosephRedmon等人在《YOLOv3:AnIncrementalImprovem
- yolo模型学习笔记——4——yolov4相比与yolov3的优点
Summit-
YOLO学习笔记
1.网络结构和架构的改变(1)yolov3使用darknet-53的主干网络,该网络基于残差结构(2)yolov4使用CSPDarknet53,增强版darknet-53,具有更高的计算效率和更好的特征提取能2.优化技术(1)yolov3使用了基础的数据增强技术(如翻转、裁剪、亮度调整等),并且使用了自适应锚框来匹配目标的大小(2)yolov41.Mosaic数据增强这是一种新的数据增强方法,通过
- 【ROS】Darknet_ROS YOLO V3 部署自训练模型 目标检测
Abaaba+
YOLO目标检测人工智能
【ROS】Darknet_ROSYOLOV3目标检测前言整体思路安装依赖项检查克隆源码编译与构建准备文件1.权重文件(xf_real.weights)2.配置文件(xf_real.cfg)3.模型配置文件(xf_real.yaml)修改配置ros.yamldarknet_ros.launch使用与测试前言本文适用于已掌握YOLOv3和Darknet基础知识的读者,旨在帮助大家快速在ROS上部署自定
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu