- 互信息:理论框架、跨学科应用与前沿进展
大千AI助手
人工智能Python#OTHER人工智能深度学习算法互信息香农通信随机变量
1.起源与核心定义互信息(MutualInformation,MI)由克劳德·香农(ClaudeShannon)在1948年开创性论文《AMathematicalTheoryofCommunication》中首次提出,该论文奠定了现代信息论的基础。互信息用于量化两个随机变量之间的统计依赖关系,定义为:若已知一个随机变量的取值,能为另一个随机变量提供的信息量。数学上,对于离散随机变量XXX和YYY,
- 一分钟了解什么是SCI影响因子 ?
学术投稿人
影响因子详解期刊的影响因子(ImpactFactor),指的是该刊前二年发表的文献在当前年的平均被引用次数。刊物的影响因子越高,也即其刊载的文献被引用率越高,一方面说明这些文献报道的研究成果影响力大,另一方面也反映该刊物的学术水平高。由美国科学情报研究所(ISI,InstituteforScientificInformation)创始人尤金.加菲得(Dr.E.Garfield)在1960年代创立,
- 一篇教你学会Git
编程界的彭于晏qaq
javaGITgit
从安装到高级使用(2025最新版)引言:为什么Git是开发者必备技能Git(GlobalInformationTracker)作为最流行的分布式版本控制系统,由Linux之父LinusTorvalds于2005年创建,现已成为软件开发的基础设施。与传统集中式版本控制系统(如SVN)相比,Git具有三大核心优势:分布式架构:每个开发者本地都有完整仓库副本,支持离线工作高效分支管理:创建和切换分支几乎
- 每周一段仿写-181028
Zeroun_Ph
Theneedfornewlearningstylesdoesnotmeanignoringthewaysinthepast.TheInternetagebringssomechallengesnotseenbefore,mostobviouslyandmostworryinglyuselessinformationblast.Butfragmentationoflearningandtheine
- 用matlab对微分方程组进行仿真,基于MATLAB的微分方程组的数值计算
稗官无印
238科技资讯科技资讯SCIENCE&TECHNOLOGYINFORMATION2009NO.06SCIENCE&TECHNOLOGYINFORMATION学术论坛传统的解微分方程组的方法有近似分析解法﹑表解法和图解法。这些方法有一定的局限性。MATLAB是一种基于矩阵的数学软件包,该软件包包括了一个数值程序扩展库,并且有高级编程格式。应用MATLAB工具箱中自带的四阶五级的龙格库塔法(ode45
- Kafka事务机制详解
一碗黄焖鸡三碗米饭
Kafka全景解析kafka分布式Java副本事务分区大数据
目录Kafka事务机制详解1.Kafka中的事务概述2.Kafka事务的基本概念2.1精确一次处理(ExactlyOnceSemantics,EOS)2.2Kafka事务的工作流程3.Kafka事务的配置与使用3.1生产者端的事务配置3.2消费者端的事务配置4.Kafka事务的优势与限制4.1Kafka事务的优势4.2Kafka事务的限制5.总结在分布式系统中,事务性操作(如数据库事务)是非常重要
- VSCode 利用 debugpy 调试 python项目【launch.json】
u013250861
#IDE/VSCodevscodeide编辑器
一、修改launch.json(VSCode){//UseIntelliSensetolearnaboutpossibleattributes.//Hovertoviewdescriptionsofexistingattributes.//Formoreinformation,visit:https://go.microsoft.com/fwlink/?linkid=830387"version"
- MIB(管理信息库)简介
MIB(ManagementInformationBase,管理信息库)是SNMP(简单网络管理协议)的核心组成部分,用于存储网络设备的可管理对象信息(如接口状态、CPU使用率、内存占用等),是网络管理员远程监控、配置和管理设备的关键工具。以下从定义、结构、作用、版本演变及实际应用等方面详细介绍:一、MIB的核心定义与作用MIB是网络设备中所有可被SNMP管理的信息的标准化集合,遵循结构化信息管理
- MATLAB实现基于GA-CNN-BiLSTM-Attention遗传算法(GA)优化卷积双向长短期记忆神经网络融合注意力机制进行多变量时序预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码神经网络matlabcnn支持向量机人工智能大数据深度学习
目录MATLAB实现基于GA-CNN-BiLSTM-Attention遗传算法(GA)优化卷积双向长短期记忆神经网络融合注意力机制进行多变量时序预测的详细项目实例...2项目背景介绍...2项目目标与意义...31.提高多变量时序预测的准确性...32.弥补传统方法的局限性...33.提高模型训练效率...3
- GaussDB 数据库架构师修炼(八) 等待事件(2)-ASP报告分析
小云数据库服务专线
GaussDB数据库架构师修炼之路gaussdb数据库架构数据库
1ASP报告简介ASP-ActiveSesionProfile(活跃会话档案信息),ASP每秒获取活跃会话事件,放到内存中,内存中的数据达阈值,会落盘gs_asp表中。ASPReport根据输入的时间段与slot个数,从内存和磁盘中取数据可视化到html中。2生成ASP报各-GUC参数说明ASP相关GUC参数GUC参数默认值说明enable_aspon是否开启活跃会话信息activesession
- 多维时序 | Matlab实现GA-LSTM-Attention遗传算法优化长短期记忆神经网络融合注意力机制多变量时间序列预测
天天Matlab代码科研顾问
预测模型神经网络matlablstm
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍风力发电是一种清洁能源,越来越受到人们的关注和重视。然而,由于风力发电的不稳定性和不可控性,风电预测成为了一个至关重要的问题。为了更精准地预测风电发电量,许多研究者开始尝试利
- GWO-CNN-BiLSTM-Attention多变量多步时间序列预测 | Matlab实现灰狼算法优化卷积双向长短期记忆融合注意力机制
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍摘要:时间序列预测在各个领域具有广泛的应用,而多变量多步时间序列预测由于其复杂性和挑战性,一直是研究热点。本文提出了一种基于灰狼算法(GreyWolfOptimizer,GWO)优化的卷积神经网络(Conv
- 人工智能自然语言处理:Transformer 模型详解
大力出奇迹985
人工智能自然语言处理transformer
一、Transformer模型的诞生背景在自然语言处理的漫长征程中,早期的传统模型,如循环神经网络(RNN)及其变体长短时记忆网络(LSTM),曾占据主导地位。RNN试图通过依次处理序列中的每个元素,来捕捉上下文信息。但它存在一个致命弱点,在处理长序列时,会面临梯度消失或梯度爆炸的问题,就像一个长途跋涉的旅人,随着路程的增加,逐渐忘记了出发时的目标和重要信息。LSTM虽然在一定程度上缓解了这个问题
- SK揭秘:AI与代码的智能翻译官
陈乔布斯
人工智能大模型AI人工智能架构微服务AI大模型pythonSemanticKernel
引言:当大模型遇见传统代码——SK的"智能翻译官"角色想象你是一家电商公司的开发者,老板要求你给客服系统加个"AI大脑":用户发一句"我想买双轻便的户外跑鞋",系统能自动理解需求、查库存、推荐商品,甚至关联用户过往购买记录。直接调用GPTAPI?你得手动处理自然语言解析、数据库查询、上下文记忆,代码乱成一团;纯写传统逻辑?又无法应对千变万化的用户提问。这时,SemanticKernel(SK)就像
- 用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
SaleCoder
python机器学习开发语言Python股票预测LSTM股票模型机器学习股票趋势
引言在AI驱动的金融时代,机器学习股票趋势预测已成为投资者和开发者关注的热点。通过Python,我们可以构建智能模型,分析历史数据并预测未来股价走势。这不仅结合了时间序列分析和深度学习技术,还能帮助用户做出更明智的投资决策。本文将详细指导你用Python从零构建一个LSTM股票模型,结合线性回归作为基准,融入常用股票预测方法如移动平均和特征工程。我们会使用真实数据(如苹果股票),强调模型的难度与高
- LightGBM+Transformer-LSTM多变量回归交通流量预测,附模型研究报告(Matlab)
matlab科研助手
transformerlstm回归
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍交通流量预测作为智能交通系统(ITS)的核心组成部分,对城市规划、交通管理、交通诱导和出行决策具有至关重要的意义。准确、可靠的流量预测能够有效缓解交通拥堵,提高道路利用率,降
- 动效总监的“文本魔法”:精通AE文本动画器,实现程序化文字特效
Kingsdesigner
adobeAfterEffects动画ui前端框架表达式文本动画
在动态视觉设计中,我们常常探讨一对核心的“对立统一”:一方面是**“作为信息载体的文本”(TextasInformation),它静默、规整,承载着语义;另一方面是“作为动态主角的文本”(TextasMotion)**,它需要富有表现力、充满情感,能通过自身的运动来强化叙事。如何让前者,优雅地、系统性地,转变为后者?在海外设计界工作的十余年间,我发现,对“程序化”思维的掌握,是连接“信息”与“情感
- IIS文件上传漏洞绕过:深入解析与高效防御
目录一、IIS解析漏洞的底层逻辑二、绕过技巧:从基础到高级1.分号截断与路径拼接(经典手法)2.目录解析漏洞利用3.操作系统特性与字符混淆4.扩展名黑名单绕过5.结合其他漏洞的链式攻击三、防御方案:从代码到架构的多层防护1.代码层加固2.服务器配置优化3.网络层防护4.监控与应急响应四、实战复现:分阶段绕过防御五、总结与思考一、IIS解析漏洞的底层逻辑IIS(InternetInformation
- 零基础完整版入门经典深度学习时间序列预测项目实战+最新前沿时间序列预测模型代码讲解学习整理(附完整可运行代码)
OverOnEarth
时间序列预测项目实战深度学习学习人工智能
专栏内容本专栏主要整理了作者在时间序列预测领域内的一些学习思路与代码整理,帮助大家在初进入此领域时,可以快速掌握代码进行实战操作,对代码的操作再结合论文阅读肯定是上升更快嘛,作者也愿意和大家一起讨论进步,下面的内容会逐步更新,作者主页的资源列也会放出一些可下载的资源供大家参考学习噢。一、LSTM时间序列预测完整代码示例学习分析(pytorch框架)精选试读文章二、LSTM多变量输入实现多步预测完整
- 语义网络技术解析:AI人工智能的知识表示方法
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能ai
语义网络技术解析:AI人工智能的知识表示方法关键词:语义网络、知识表示、人工智能、节点与边、本体论、推理引擎、知识图谱摘要:在人工智能的世界里,“让机器理解知识"是一个核心难题。如果把AI比作一个正在上学的孩子,那么"知识表示"就是教孩子如何整理书包里的课本和文具——既要知道每个物品是什么,还要明白它们之间的关系(比如"数学书"和"铅笔"都属于"学习用品”)。语义网络(SemanticNetwor
- Pytorch实现细节解析:Transformer模型的Encoder与Decoder逐行代码讲解
lazycatlove
pytorchtransformer人工智能
文章目录摘要一、Transformer1.1为什么要使用attention1.2Transformer的优点二、Transformer模型Encoder和Decoder原理讲解与其Pytorch逐行实现2.1wordembedding2.2单词索引构成源句子和目标句子2.3构建positionembedding2.4构造encoder的self-attentionmask2.5构造intra-at
- Transformer模型Decoder原理精讲及其PyTorch逐行实现
老鱼说AI
transformerpytorch深度学习人工智能学习python
原理:Decoder的核心是一个自回归(Auto-regressive)的生成器。它的任务是在给定源序列的编码表示(encoder_outputs)和已生成的目标序列部分(y_1,...,y_{t-1})的条件下,预测出下一个词y_t的概率分布。一个标准的DecoderLayer包含三个核心子层:1.带掩码的多头自注意力(MaskedMulti-HeadSelf-Attention):用于处理已生
- 入门网络安全,NISP真的有必要考吗?
一、NISP是什么?国家信息安全水平考试(NationalInformationSecurityTestProgram,简称NISP),是由中国信息安全测评中心实施培养国家网络空间安全人才的项目,由国家网络空间安全人才培养基地运营/管理。说白了就是国家为了发展网络安全而搭建的一个培训、认证考试平台。由国家做背书,属于国家级别的认证考试。NISP认证分为一级、二级、三级,证书由中国信息安全测评中心颁
- Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例(含模型描述及示例代
nantangyuxi
Python含模型描述及示例代码算法神经网络python人工智能大数据深度学习机器学习
目录Python实现基于BO-CNN-LSTM-Mutilhead-Attention贝叶斯优化算法(BO)优化卷积长短期记忆神经网络融合多头注意力机制进行多特征分类预测的详细项目实例...2项目背景介绍...2项目目标与意义...3高效的模型优化...3深度特征提取...3序列数据的时序建模...3
- Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码matlab神经网络集成学习人工智能大数据深度学习机器学习
目录Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例2项目背景介绍...2项目目标与意义...21.提高时序数据预测准确性...22.弱学习器组合的优势...33.提高数据预测的泛化能力...3
- no version information available的解决办法
柳鲲鹏
最近在编译时,发现一个错误:/usr/lib/libcrypto.so.1.0.0:noversioninformationavailable(requiredby/usr/sbin上网搜索了一番,没找到解决办法。到/usr/lib下ll一下,有两个文件:libcrypto.solibcrypto.so.1.0.0正常。怎么大小一样?后者应该是个link才对。怎么办?直接把后者删除。然后错误消失。
- LSTM学习笔记
LSTM的基本概念LSTM(LongShort-TermMemory)是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时出现的梯度消失或梯度爆炸问题。LSTM通过引入门控机制,能够有效地捕捉长期依赖关系,广泛应用于自然语言处理、时间序列预测等领域。LSTM的核心结构LSTM的核心在于其记忆单元(MemoryCell)和三个门控机制:输入门(InputGate)、遗忘门
- 储粮温度预测新方案!FEBL模型用代码实现:LSTM+注意力+岭回归的完整流程
Atlas Shepherd
Pythonpython深度学习机器学习
特征增强型宽度学习(FEBL)的模型,用于储粮温度预测任务。以下是代码的逐层解析和功能说明:1.依赖库导入importtorchimporttorch.nnasnnimporttorch.optimasoptimimportnumpyasnpimporttimefromsklearn.preprocessingimportMinMaxScalerfromsklearn.model_selectio
- 【音视频学习】三、FFmpeg音频编码过程详解
知无涯啊
音视频学习ffmpeg
文章目录前言1、FFmpeg编解码器的编码流程概述2、FFmpeg编码函数详解2.1constAVCodec*codec=avcodec_find_encoder(AV_CODEC_ID_MP2)2.2AVCodecContext*c=avcodec_alloc_context3(codec);2.3给编码器上下文设置参数2.4avcodec_open2(c,codec,NULL)2.5pkt=a
- PostgreSQL 源码解读(88)- 查询语句#73(SeqNext函数#1)
EthanHe
本节介绍了SeqNext函数的主要实现逻辑以及该函数中初始化相关数据结构的实现逻辑。SeqNext函数作为参数传递到函数ExecScan中,执行实际的扫描操作。一、数据结构TupleTableSlotTupleTableSlot,用于存储元组相关信息/*basetupletableslottype*/typedefstructTupleTableSlot{NodeTagtype;//Node标记#
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号