- 论文阅读:《针对多目标优化和应用的 NSGA-II 综述》一些关于优化算法的简介
行然梦实
优化算法论文阅读算法数学建模
前言提醒:文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。内容由AI辅助生成,仅经笔者审核整理,请甄别食用。文章目录前言一些关于优化算法的缩写优化算法Ma,Haiping&Zhang,Yajing&Sun,Shengyi&Liu,Ting&S
- 多目标优化:改进蚁群算法解决实际工程问题
AI智能探索者
算法服务器linuxai
多目标优化:改进蚁群算法解决实际工程问题关键词:多目标优化、改进蚁群算法、实际工程问题、算法原理、项目实战摘要:本文聚焦于多目标优化领域,介绍了如何运用改进蚁群算法来解决实际工程问题。首先阐述了多目标优化和蚁群算法的相关概念,接着深入分析改进蚁群算法的原理和具体操作步骤,包括数学模型和公式。通过项目实战展示了该算法在实际中的应用,探讨了其实际应用场景、工具和资源推荐,以及未来发展趋势与挑战。最后进
- 20250704-基于强化学习在云计算环境中的虚拟机资源调度研究
基于强化学习在云计算环境中的虚拟机资源调度研究随着云计算规模的持续扩大,数据中心虚拟机资源调度面临动态负载、异构资源适配及多目标优化等挑战。传统启发式算法在复杂场景下易陷入局部最优,而深度强化学习(DRL)凭借序贯决策能力为该问题提供了新路径。本研究以动态多目标组合优化理论为基础,结合CloudSimPy仿真框架与TensorFlow,构建“仿真-训练-验证”闭环调度系统,重点设计动态加权多目标奖
- 三轴云台之控制算法协同技术篇
SKYDROID云卓小助手
人工智能算法机器学习网络自动化
三轴云台的控制算法协同技术是确保云台在复杂动态环境下实现高精度、高稳定性运动控制的核心,其技术体系涵盖多传感器融合、多算法协同以及多目标优化三个关键维度。以下从技术架构与实现路径展开分析:一、多传感器融合:构建环境感知基础三轴云台通过集成IMU(惯性测量单元)、编码器、视觉传感器等多源数据,构建高鲁棒性的环境感知系统。IMU与编码器融合IMU提供高频率的姿态角速度数据,编码器提供低延迟的关节位置反
- 蚁群算法原理与应用详解
本文还有配套的精品资源,点击获取简介:蚁群算法是一种基于蚂蚁寻找食物路径行为的优化算法,它能够有效解决包括旅行商问题、网络路由和多目标优化在内的复杂问题。该算法模拟蚂蚁释放信息素来找到最短路径的过程,通过模拟蚂蚁的行为,算法逐步优化选择路径。蚁群算法具有并行性和全局优化能力,但也面临早熟收敛和参数调整的挑战。它已成功应用于物流优化、通信网络、任务调度、机器学习、图像处理和生物医学等众多领域。1.蚁
- 结构力学优化算法:多目标优化:遗传算法与结构优化_2024-08-08_19-41-25.Tex
chenjj4003
材料力学2算法javascript前端人工智能线性代数
结构力学优化算法:多目标优化:遗传算法与结构优化绪论结构优化的重要性在工程设计中,结构优化扮演着至关重要的角色。它旨在通过最小化成本、重量或应力等目标,同时确保结构的强度、刚度和稳定性满足设计要求,来提高结构的性能和效率。结构优化可以帮助工程师在设计初期就避免潜在的结构问题,减少材料浪费,降低生产成本,同时提升产品的竞争力。多目标优化的概念多目标优化是指在优化过程中同时考虑多个目标函数的优化问题。
- 论文学习——基于双种群进化的不连续和不规则可行域动态约束多目标优化
臭东西的学习笔记
学习
论文题目:Dual-PopulationEvolutionBasedDynamicConstrainedMultiobjectiveOptimizationWithDiscontinuousandIrregularFeasibleRegions基于双种群进化的不连续和不规则可行域动态约束多目标优化(XiaoxuJiang,QingdaChen,Member,IEEE,JinliangDing,Se
- 动态多目标进化算法:基于迁移学习的动态多目标遗传算法Tr-NSGA-II求解CEC2015,提供完整MATLAB代码
IT猿手
动态多目标优化MATLAB动态多目标算法迁移学习matlab动态多目标进化算法动态多目标优化算法人工智能机器学习
一、Tr-NSGA-II介绍基于迁移学习的动态多目标遗传算法(TransferLearningbasedDynamicMultiobjectivenon-dominatedsortinggeneticalgorithmII,Tr-NSGA-II)是一种将迁移学习与非支配排序遗传算法(NSGA-II)相结合的优化算法,用于解决动态多目标优化问题。工作原理迁移学习的应用:Tr-NSGA-II利用迁移学
- 路径规划算法概论:从理论到实践
weixin_47233946
算法
##引言路径规划(PathPlanning)是机器人学、自动驾驶、物流优化、游戏开发等领域的核心技术,旨在为移动主体(如机器人、车辆)找到从起点到目标点的最优或可行路径。随着人工智能和计算能力的提升,路径规划算法在动态环境处理、多目标优化和实时响应方面持续演进。本文将系统梳理路径规划算法的核心分类、基本原理及应用案例。---##一、路径规划算法的核心分类###1.1传统图搜索算法**核心思想**:
- AI赋能智能制造
程序猿学长
人工智能
AI赋能智能制造是当前工业转型升级的核心驱动力之一,通过人工智能技术与传统制造流程的深度融合,推动生产模式向智能化、柔性化、高效化方向发展。以下是AI在智能制造中的关键应用与价值分析:一、AI驱动智能制造的核心场景智能设计与仿真优化生成式设计:基于AI算法(如GAN、强化学习)自动生成产品设计方案,满足性能、材料、成本等多目标优化。数字孪生:通过AI构建虚拟工厂模型,实时模拟生产过程,预测设备故障
- [智能算法]蚁群算法原理与TSP问题示例
七刀
智能算法算法
目录编辑一、生物行为启发的智能优化算法1.1自然界的群体智能现象1.2人工蚁群算法核心思想二、算法在组合优化中的应用演进2.1经典TSP问题建模2.2算法流程优化三、TSP问题实战:Python实现与可视化3.1算法核心类设计3.2参数敏感性实验3.3可视化分析四、关键参数调优指南4.1基准参数范围4.2动态调参策略4.3性能优化技巧五、扩展应用与前沿方向5.1多目标优化问题5.2深度强化学习融合
- 基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度
天天酷科研
多目标优化算法(MOB)算法多目标优化调度
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度一、引言1.1研究背景与意义在现代电力系统中,微电网凭借其独特的优势发挥着至关重要的作用。随着能源转型的不断推进,传统电力系统面临着诸多挑战,大规模新能源和新型负荷的接入,使得分布式能源的大规模接入及其带来的波动性和间歇性问题愈发突出。微电网作为一种基于分布式能源资源的小型电力系统,具有独立运行和自主调度的能力,能够有
- 材料力学优化算法:多目标优化在材料失效分析中的应用_2024-08-08_07-50-18.Tex
chenjj4003
材料力学算法java前端人工智能矩阵线性代数javascript
材料力学优化算法:多目标优化在材料失效分析中的应用材料力学优化算法:多目标优化在材料失效分析中的应用简介多目标优化的基本概念多目标优化(Multi-ObjectiveOptimization,MOO)是一种处理具有多个相互冲突目标的优化问题的方法。在传统的单目标优化中,我们通常寻找一个单一的最优解,而在多目标优化中,由于目标之间的冲突,我们寻找的是一组解,这些解在所有目标上都是最优的,这组解被称为
- MATLAB算法实战应用案例精讲-【元启发式算法】随机蛙跳跃算法(SFLA)(附matlab代码实现)
林聪木
启发式算法算法
目录前言知识储备多目标优化问题多目标元启发式优化方法算法原理数学模型算法参数更新策略算法思想算法步骤全局搜索过程局部搜索过程算法停止条件算法流程图伪代码优缺点算法拓展一种用于多目标组合优化的三阶段混合蛙跳框架多目标背包问题三阶段多目标混合蛙跳框架基于多目标背包问题的改进策略实验结果与分析基于三阶段多目标混合蛙跳算法的移动群智感知变速多任务调度移动群智感知的变速多任务调度模型求解移动群智感知变速多任
- NSGA-II与蚁群算法结合的目标规划实现
芦苇毛
本文还有配套的精品资源,点击获取简介:这个压缩包包含NSGA-II算法的实现代码,用于解决多目标优化问题,适用于工程设计、经济调度等领域。它可能还融合了蚁群算法,以处理组合优化问题。代码提供了初始化变量、非支配排序、遗传操作等关键功能,使用户能够通过算法找到多个冲突目标间的帕累托最优解集。1.NSGA-II算法在多目标优化中的应用在处理复杂问题时,工程师和研究人员经常面临需要同时优化多个目标的挑战
- HV指标——多目标进化算法性能评价指标
小可的科研日常
算法
超体积指标(HV,Hypervolume):算法获得的非支配解集与参照点围成的目标空间中区域的体积。HV值越大,说明算法的综合性能越好。优点:1.同时评价收敛性和多样性;2.能够以单个数字得到解与最优集合的接近程度,并在某种程度上得到目标空间上解的分布。缺点:1.计算复杂度高,尤其是高维多目标优化问题;2.参考点的选择在一定程度上决定超体积指标值的准确性。
- Matlab 遗传算法的库 gads
zhangfeng1133
数据分析算法
在MATLAB中,用于遗传算法的库主要是MATLAB自带的遗传算法与直接搜索工具箱(GADS)。这个工具箱提供了遗传算法的实现框架,允许用户设计复杂的遗传算法来解决具体问题。MATLAB自带的遗传算法工具箱(GADS)功能•无约束优化:可以求解无约束优化问题。•线性约束优化:支持线性约束优化问题。•非线性约束优化:能够处理非线性约束优化问题。•多目标优化:支持多目标优化问题。•自定义操作:用户可以
- 材料力学优化算法:遗传规划(GP):多目标优化与遗传规划_2024-08-08_02-48-19.Tex
chenjj4003
材料力学算法网络linuxpython人工智能
材料力学优化算法:遗传规划(GP):多目标优化与遗传规划绪论遗传规划(GP)简介遗传规划(GeneticProgramming,GP)是一种基于自然选择和遗传学原理的搜索算法,用于自动发现计算机程序、数学公式、策略或任何可表示为树结构的解决方案。它由JohnKoza在1990年代初提出,作为遗传算法(GeneticAlgorithm,GA)的扩展,特别适用于解决复杂的问题,如函数优化、机器学习、信
- 【无人机3D路径规划】基于非支配排序遗传算法NSGAII的无人机3D路径规划研究(Matlab代码实现)
@橘柑橙柠桔柚
无人机matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、NSGAII算法原理三、无人机3D路径规划问题建模四、基于NSGAII的无人机3D路径规划算法实现五、实验结果与分析六、结论与展望2运行结果3参考文献4Matlab代码实现1概述非支配排序遗传算法(NSGA)是一种多目标优化算法,旨在解决具有多个目标
- 【人工智能的数学基础】寻找多目标优化问题的帕累托最优解
AI天才研究院
自然语言处理人工智能语言模型python开发语言
文章目录1.建模多目标优化问题2.求解多目标优化问题⚪无约束的梯度下降⚪带约束的梯度下降3.优化求解过程⚪梯度内积⚪共享编码4.主次型多目标优化⚪主次型多目标优化的应用寻找多目标优化问题的帕累托最优解.paper:Multi-TaskLearningasMulti-ObjectiveOptimization多目标优化是指同时优化多个相关任务的目标,多任务学习是一个典型的多目标优化问题,其总目标函数
- 【算法】第二代遗传算法NSGA-II优化SVR超参数模型
傻傻虎虎
机器学习算法pythonNSGA-IISVRGA遗传算法回归模型
第二代遗传算法NSGA-II优化SVR超参数模型一、NSGA-II介绍二、建模目的三、NSGA-II优化SVR超参数模型3.1超参数设置3.2导入数据集3.3模型搭建3.3.1定义自变量的类3.3.2初始化种群3.3.3进化3.3.4输出最优解集合四、模型测试一、NSGA-II介绍NSGA-II(Non-dominatedSortingGeneticAlgorithmII)是一种多目标优化算法,用
- 深度强化学习(DRL)框架与多目标调度优化详解
大霸王龙
python深度学习多目标优化深度强化学习
深度强化学习(DRL)框架与多目标调度优化详解(截至2025年4月,结合最新研究进展)一、DRL主流框架及核心算法通用DRL框架RayRLlib:支持分布式训练,集成PPO、A3C、DQN等算法,适用于大规模多目标调度场景(如云资源分配)。StableBaselines3:基于PyTorch,提供模块化接口,支持自定义奖励函数和状态空间,适合动态多目标优化问题(如柔性车间调度)。TensorFor
- NSGA-II(非支配排序遗传算法II)详解与实现
ningaiiii
机器学习与深度学习数据挖掘人工智能神经网络深度学习
NSGA-II(非支配排序遗传算法II)详解与实现1.算法简介NSGA-II(Non-dominatedSortingGeneticAlgorithmII)是一种高效的多目标优化算法,由Deb等人在2002年提出。它主要解决多个目标之间相互冲突的优化问题。1.1核心特点快速非支配排序时间复杂度:O(MN²)M为目标数量,N为种群大小比NSGA的O(MN³)更高效拥挤度距离保持种群多样性不需要用户定
- 美国大学生数学建模竞赛COMAP2025-B题深度解读
@BreCaspian
数学建模数学建模
COMAP2025B题:可持续旅游管理模型深度解答一、问题背景与核心挑战背景:阿拉斯加朱诺市因冰川景观吸引大量游客(2023年160万邮轮游客),但过度旅游导致冰川退缩(2007年以来退缩8个足球场长度),并引发居民不满(住房压力、噪音污染)。需平衡经济收益(年收入3.75亿美元)、环境保护(冰川保护)与社会公平(居民满意度)。核心挑战:多目标优化:最大化经济收益vs最小化碳排放vs提升居民满意度
- Pytorch深度学习框架60天进阶学习计划 - 第34天:自动化模型调优
凡人的AI工具箱
深度学习pytorch学习人工智能自动化AI编程
Pytorch深度学习框架60天进阶学习计划-第34天:自动化模型调优今天,我们将深入研究一个让许多数据科学家和机器学习工程师头疼的问题:如何高效地调整模型超参数。我喜欢把超参数调优比作烹饪,你有最好的食材(数据)和厨具(模型架构),但如果调料(超参数)不对,再好的厨师也做不出美味的菜肴!我们将学习如何使用Optuna这个强大的工具进行自动化超参数优化,实践多目标优化策略,并对比贝叶斯优化与网格搜
- 基于改进蜣螂优化算法的无人机避障三维航迹规划
天天酷科研
无人机(DRONE)算法无人机
基于改进蜣螂优化算法的无人机避障三维航迹规划摘要针对无人机三维航迹规划中动态障碍物避障能力不足、多目标优化效率低的问题,提出一种基于改进蜣螂优化算法(FusionAdaptiveDungBeetleOptimization,FADBO)的航迹规划方法。通过设计融合路径长度、飞行高度、威胁规避与能耗约束的多目标成本函数,结合改进的FADBO算法自适应滚动机制与动态避障策略,实现复杂环境下无人机的全局
- 生成式AI驱动的高分子材料研发与应用
keyan_889
材料人工智能材料科学高分子化学AI航空航天电力工业硕博研究生
近年来,生成式人工智能(如大语言模型)在材料科学领域掀起革命性浪潮,其核心能力(从海量数据中挖掘构效关系、实现分子逆向设计)正在颠覆传统材料研发模式。以聚合物为例,传统依赖实验试错或量子计算的设计方法面临周期长、成本高、多目标优化困难等瓶颈,而生成式AI通过“数据驱动+智能生成”范式,可快速预测材料性能、生成新型分子结构,加速从实验室到产业化的进程。据《Nature》子刊统计,2020年以来基于生
- 【数学建模】熵权法
烟锁池塘柳0
数学建模数学建模算法
熵权法介绍熵权法是一种常用的用于多指标决策问题中的权重确定方法,它通过对决策矩阵的熵值进行计算,来自动地评估各个指标的权重。熵值能够反映各个指标的不确定性,熵值越小,表明该指标的信息量越大,反之亦然。熵权法可以避免人为设定权重的问题,通过熵权法确定的权重是一个客观量,只和数据本身的性质有关。熵权法在多目标优化问题中具有广泛的应用。文章目录熵权法介绍1.熵权法的基本原理2.熵权法步骤步骤1:标准化决
- Matlab 基于最小二乘向量机 LSSVM + NSGAII 多目标优化算法的工艺参数优化
前程算法屋
私信获取源码工艺参数优化matlab算法多目标优化
Matlab基于最小二乘向量机LSSVM+NSGAII多目标优化算法的工艺参数优化一、引言1.1研究背景与意义在现代工业生产中,工艺参数优化占据着举足轻重的地位。它犹如工业生产的核心引擎,直接影响着企业的生产效率、产品质量以及成本控制。从生产效率角度看,优化工艺参数能够显著提升生产速度。合理的参数设置可使生产设备处于最佳运行状态,减少不必要的停机与等待时间,让生产流程更加顺畅。以汽车制造业为例,通
- 【优化选址】基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究(Matlab代码实现)
荔枝科研社
matlab数据结构算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究一、引言二、海上救援选址多目标优化问题分析(一)成本因素(二)救援时间因素(三)可靠性因素三、多目标遗传NSGAII算法(一)算法原理(二)在
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不