import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels
# 输入和输出
n_input = 784
n_output = 10
#卷积神经网络的参数初始化(w,b)
weights = {
'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64], stddev=0.1)), #第一层卷积层权重参数[3, 3, 1, 64]卷积核的大小(3*3*1);卷积核的个数64(特征图的个数)
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128], stddev=0.1)), #第二层卷积层权重参数[3, 3, 64, 128]卷积核的大小(3*3*64(与输入图像深度对应));卷积核的个数128(特征图的个数)
'wd1': tf.Variable(tf.random_normal([7*7*128, 1024], stddev=0.1)),#第一层全连接层权重参数(由于该模型中卷积并未改变输入图像的大小,经过两次池化原始图像大小(28*28)变为(7*7))
'wd2': tf.Variable(tf.random_normal([1024, n_output], stddev=0.1))#第二层全连接层权重参数(10分类)
}
biases = {
'bc1': tf.Variable(tf.random_normal([64], stddev=0.1)),
'bc2': tf.Variable(tf.random_normal([128], stddev=0.1)),
'bd1': tf.Variable(tf.random_normal([1024], stddev=0.1)),
'bd2': tf.Variable(tf.random_normal([n_output], stddev=0.1))
}
#卷积层定义
def conv_basic(_input, _w, _b, _keepratio):
# 输入预处理(转换为TensorFlow支持的格式)的
_input_r = tf.reshape(_input, shape=[-1, 28, 28, 1])#第一维:batchsize的大小(-1让TensorFlow根据其余值推断该值的大小);第二维:图像的高度;第三维:图像的宽度;第四维:图像的深度
# 第一层卷积
_conv1 = tf.nn.conv2d(_input_r, _w['wc1'], strides=[1, 1, 1, 1], padding='SAME')
#print(help(tf.nn.conv2d))查看函数的帮助文档
#strides=[batchsize的stride大小, h的stride大小, w的stride大小, c的stride大小]
#padding='SAME'/'VALID':自动填充0(推荐)/不进行填充
#_mean, _var = tf.nn.moments(_conv1, [0, 1, 2])
#_conv1 = tf.nn.batch_normalization(_conv1, _mean, _var, 0, 1, 0.0001)
_conv1 = tf.nn.relu(tf.nn.bias_add(_conv1, _b['bc1']))#卷积之后进行激活
_pool1 = tf.nn.max_pool(_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
#池化操作,ksize窗口大小(batchsize的大小;图像的高度;图像的宽度;图像的深度),strides=[1, 2, 2, 1]:h和w方向步长均为2
_pool_dr1 = tf.nn.dropout(_pool1, _keepratio)#dropout(随机地减少部分节点)
# 第二层卷积
_conv2 = tf.nn.conv2d(_pool_dr1, _w['wc2'], strides=[1, 1, 1, 1], padding='SAME')
#_mean, _var = tf.nn.moments(_conv2, [0, 1, 2])
#_conv2 = tf.nn.batch_normalization(_conv2, _mean, _var, 0, 1, 0.0001)
_conv2 = tf.nn.relu(tf.nn.bias_add(_conv2, _b['bc2']))
_pool2 = tf.nn.max_pool(_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
_pool_dr2 = tf.nn.dropout(_pool2, _keepratio)
# 全连接层
_dense1 = tf.reshape(_pool_dr2, [-1, _w['wd1'].get_shape().as_list()[0]])#定义全连接的输入
# 第一层全连接层(神经网络)
_fc1 = tf.nn.relu(tf.add(tf.matmul(_dense1, _w['wd1']), _b['bd1']))
_fc_dr1 = tf.nn.dropout(_fc1, _keepratio)
# 第一、二层全连接层
_out = tf.add(tf.matmul(_fc_dr1, _w['wd2']), _b['bd2'])
# 定义返回值
out = { 'input_r': _input_r, 'conv1': _conv1, 'pool1': _pool1, 'pool1_dr1': _pool_dr1,
'conv2': _conv2, 'pool2': _pool2, 'pool_dr2': _pool_dr2, 'dense1': _dense1,
'fc1': _fc1, 'fc_dr1': _fc_dr1, 'out': _out
}
return out
x = tf.placeholder(tf.float32, [None, n_input])
y = tf.placeholder(tf.float32, [None, n_output])
keepratio = tf.placeholder(tf.float32)
_pred = conv_basic(x, weights, biases, keepratio)['out']
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(y, _pred))
optm = tf.train.AdamOptimizer(learning_rate=0.001).minimize(cost)
_corr = tf.equal(tf.argmax(_pred,1), tf.argmax(y,1))
accr = tf.reduce_mean(tf.cast(_corr, tf.float32))
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
training_epochs = 10
batch_size = 16 #网络结果比较复杂,这里取小一些,方便演示,正常情况下要稍大一些
display_step = 1
for epoch in range(training_epochs):
avg_cost = 0.
#total_batch = int(mnist.train.num_examples/batch_size)
total_batch = 10 #简单示例,正常情况如上
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys, keepratio:0.7})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})/total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys, keepratio:1.})
print (" Training accuracy: %.3f" % (train_acc))
#test_acc = sess.run(accr, feed_dict={x: testimg, y: testlabel, keepratio:1.})
#print (" Test accuracy: %.3f" % (test_acc))
运行结果:

可以看出,损失值在不断减少,训练集的精度也有改善