- 多模态大模型:技术原理与实战 看清GPT的进化史和创新点
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战看清GPT的进化史和创新点1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习方法1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2GPT系列模型的发展1.3.3多模态大模型的兴起2.核心概念与联系2.1
- 【EI会议征稿】东北大学主办第三届机器视觉、图像处理与影像技术国际会议(MVIPIT 2025)
诗远Yolanda
图像处理计算机视觉考研视频机器学习论文阅读
一、会议信息大会官网:www.mvipit.org官方邮箱:
[email protected]会议地点:辽宁沈阳主办单位:东北大学会议时间:2025年9月27日-9月29日二、征稿主题集中但不限于“机器视觉、图像处理与影像技术”等其他相关主题。机器视觉:视觉中的统计机器学习;立体视觉标定;几何建模与处理;人脸识别与手势识别;早期视觉和生物学启发的视觉;光流法和运动追踪;图像分割和图像分类;基于模型的视觉
- 文本生成新纪元:解锁大模型的企业级应用密码
数字化浪潮席卷各行业的当下,文本生成技术正经历着翻天覆地的变革,这场变革的幕后功臣正是大模型。今天,咱们就来深入探讨大模型在文本生成领域的奥秘,看看它如何赋能企业,又该怎样规避风险,实现价值最大化。技术跃迁:从笨拙规则到智能生成回首往昔,文本生成依靠规则模板与关键字替换,虽能实现基础自动化,却如机械舞者,动作生硬、缺乏灵动。业务稍有变动,规则需全面重构,耗时费力。随着N-gram等统计机器学习方法
- 【C语言练习】100. 使用C语言实现简单的自然语言理解算法
视睿
从零开始学习机器人c语言算法开发语言排序算法
100.使用C语言实现简单的自然语言理解算法100.使用C语言实现简单的自然语言理解算法关键词匹配算法简介示例代码:简单的关键词匹配算法代码说明示例运行扩展功能其他方法基于规则的方法统计机器学习方法C语言中统计机器学习方法概述常见统计机器学习算法的C实现贝叶斯定理基础算法核心思想常见变体实现示例(Python)优缺点优化库与工具性能与注意事项有限状态自动机(FSA)深度学习接口调用混合方法100.
- 统计机器学习 (Statistical Machine Learning) 原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
统计机器学习(StatisticalMachineLearning)原理与代码实例讲解1.背景介绍统计机器学习是现代人工智能和数据科学的核心领域之一。它结合了统计学和计算机科学的理论与方法,通过数据驱动的方式来构建预测模型和决策系统。统计机器学习不仅在学术研究中占据重要地位,还在工业界有广泛应用,如推荐系统、图像识别、自然语言处理等。2.核心概念与联系2.1统计学与机器学习的关系统计学关注数据的收
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 多模态大模型:技术原理与实战 ChatGPT的诞生
AI大模型应用之禅
计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
多模态大模型:技术原理与实战ChatGPT的诞生作者:禅与计算机程序设计艺术1.背景介绍1.1人工智能的发展历程1.1.1早期人工智能1.1.2机器学习时代1.1.3深度学习的崛起1.2自然语言处理的演进1.2.1基于规则的方法1.2.2统计机器学习方法1.2.3深度学习在NLP中的应用1.3大语言模型的出现1.3.1Transformer架构的提出1.3.2预训练语言模型的发展1.3.3GPT系
- 统计机器学习第十三章极大似然估计的性质——图解MLE的渐进正态性
cui_hao_nan
统计机器学习导论机器学习
n=10;t=10000;s=1/12/n;x=linspace(-0.4,0.4,100);y=1/sqrt(2*pi*s)*exp(-x.^2/(2*s));z=mean(rand(t,n)-0.5,2);figure(1);clf;holdonb=20;hist(z,b);h=plot(x,y*t/b*(max(z)-min(z)),'r-');这段代码的功能是生成随机数并进行直方图和曲线的
- 赠书 | 李航老师的蓝皮书
茗创科技
赠书活动统计学习方法“统计机器学习方法是实现智能化目标的最有效的手段,统计机器学习是各种智能性处理研究领域中的核心技术,并且在这些领域的发展及应用中起着决定性的作用。”作者简介李航,日本京都大学电气电子工程系毕业,日本东京大学计算机科学博士。北京大学、南京大学客座教授,IEEE会士,ACM杰出科学家,CCF高级会员。研究方向包括信息检索,自然语言处理,统计机器学习,及数据挖掘。曾出版过三部学术专著
- 统计机器学习-感知机
又双叒叕苟了一天
感知机是二分类的线性分类模型,即通过一个超平面将数据集分割在两侧,同在一个侧的为同一个分类,一般上侧的为正例,下侧的为负例。感知机的定义假设输入空间(特征空间)是,输出空间是。输入表示实例的特征向量,对应于输入空间(特征空间)的点;输出表示实例的类别。由输入空间到输出空间的如下函数称为感知机。其中,和为感知机模型参数,叫做权值或权值向量,叫做偏置,表示和的内积。是符号函数,即并且假设数据是完全线性
- 二、自然语言处理发展历程
智享AI
深度学习自然语言处理
1.自然语言处理发展历程自然语言处理的发展历程经历了兴起阶段、符号主义、连接主义和深度学习阶段。兴起阶段:自然语言处理的萌芽期,代表人物包括图灵和香农。符号主义:自然语言处理的发展器,代表任务是乔姆斯基和他的生成文法。连接主义:自然语言处理的发展器,代表方法为统计机器学习。深度学习:自然语言处理的鼎盛期,代表人物为深度学习三巨头:YoshuaBengio、YannLeCun、GeoffreyHin
- 机器学习和深度学习检测网络安全课题:DDOS检测、恶意软件、恶意流量检测课题资料
三更科技公社
机器学习深度学习web安全
开源的DDOS检测工具https://github.com/equalitie/learn2ban基于KDDCUP99数据集预测DDoS攻击基于谱分析与统计机器学习的DDoS攻击检测技术研究基于机器学习的分布式拒绝服务攻击检测方法研究DDoSAttacksUsingHiddenMarkovModelsandCooperativeReinforcementLearning*恶意软件检测https:/
- 神经网络:深度学习优化方法
是Dream呀
神经网络深度学习神经网络人工智能
1.有哪些方法能提升CNN模型的泛化能力采集更多数据:数据决定算法的上限。优化数据分布:数据类别均衡。选用合适的目标函数。设计合适的网络结构。数据增强。权值正则化。使用合适的优化器等。2.BN层面试高频问题大汇总BN层解决了什么问题?统计机器学习中的一个经典假设是“源空间(sourcedomain)和目标空间(targetdomain)的数据分布(distribution)是一致的”。如果不一致,
- 【期末复习向】文本理解与数据挖掘-名词解释
诺坎普的风间
数据挖掘人工智能文本理解深度学习名词解释
(一)什么是自然语言处理1.自然语言处理(NLP)从最广泛的意义上说,NLP指的是任何自动处理人类语言的程序(二)一系列自然语言处理问题2.NLP常用方法基于规则的方法(基于人工标注的规则和字典,覆盖度低)统计机器学习方法(被学术界和工业界采用;使用概率模型,包括训练数据、特征工程、在参数上训练模型、将模型应用与测试数据)联结主义方法(深度学习崛起,包括没有语言特征、采用大量原始数据训练、参数量大
- zxl-机器学习-01
米米吉吉
Python机器学习
文章目录机器学习一.定义:二.计算机三阶段三.基本要求四.统计机器学习五.基本问题六.机器学习的方法作者:zstarling机器学习网络算法机器优化概率统计数据矩阵信息模型推理知识靠学习一.定义:机器学习是把数据变成知识的和过程。计算机和数学的结合。统计提供建模的框架framework。数据挖掘和机器学习本质上无区别,机器学习更偏数学。区别:ML机器学习STAT统计学networks,graphs
- 多重共线性
7ccc099f4608
最近碰到个有有意思的问题:在传统统计机器学习(lr)中,相关性检测(VIF等)防止多重共线性非常重要;但是在实际的机器学习应用中,多重共线性似乎不用考虑。参考这个回答:https://stats.stackexchange.com/questions/168622/why-is-multicollinearity-not-checked-in-modern-statistics-machine-l
- 参数估计
Xwei1226
paperreading参数估计
大学期间学习数理统计这门课程的时候,没有特别用心。说实话统计学还是挺枯燥的,而且当时也没有太多的学习意识,不知道为什么要学这些貌似八竿子打不着的东西。现在想想,当时真是toosimple,sometimesnaive啊。。等到越往后面深入,发现需要用的数学知识尤其是统计学知识越来越多,因为现在机器学习里发展最成熟应用最广泛的一部分就是统计机器学习,自然离不开统计学的方方面面。而且随着研究的逐步深入
- 图神经网络--论文精读
无盐薯片
图神经网络神经网络机器学习人工智能
论文精读图神经网络论文精读摘要介绍问题定义学习表示算法代码实战加载百科词条,构建无向图训练Word2Vec模型摘要DeepWalk用于学习隐式表征的表示学习方法,将节点在图中的连接关系进行编码,形成稠密低维连续的向量空间,可用于统计机器学习在多类别网络分类任务上表现不错,例如BlogCatalog、Flickr和YouTubeDeepWalk基于随机游走的,适用于稀疏标注的场景介绍背景:传统机器学
- 贝叶斯变分方法:初学者指南--平均场近似
无水先生
#贝叶斯理论人工智能人工智能数学模型
EricJang:ABeginner'sGuidetoVariationalMethods:Mean-FieldApproximation(evjang.com)一、说明变分贝叶斯(VB)方法是统计机器学习中非常流行的一系列技术。VB方法允许我们将统计推断问题(即,给定另一个随机变量的值来推断随机变量的值)重写为优化问题(即,找到最小化某些目标函数的参数值),本文将阐述这种精妙模型。二、文章绪论2
- 机器学习实战 梯度上升 数学推导_机器学习-白板推导系列(二)-数学基础笔记
weixin_39644377
机器学习实战梯度上升数学推导
视频如下:机器学习-白板推导系列(二)-数学基础_哔哩哔哩(゜-゜)つロ干杯~-bilibiliwww.bilibili.com一、概率-高斯分布1-极大似然估计高斯分布在统计机器学习中占据重要的地位。本节内容主要是利用极大似然估计计算高斯分布下的最优参数。Data:假设数据中有个样本,每个样本为维数据(含有个feature)所有的样本都独立同分布于高斯分布MLE:极大似然估计MLE:求最优的使得
- 2018年8月9日
真昼之月
早上提前于闹钟醒来,希望以后也能一直这样。坐地铁时再度挤成狗,早出门和地铁人不多果然是无法兼得的吗……再次久违(?)地来到公司并打扫工位,学长继续出差中,但是休产假的另一个同事倒是回来了……上午闲着没事看了看李航的统计机器学习,超困,中午睡了半个小时午觉后好了点。下午又看了一会儿书之后开始自己找正事干,写评分卡模型的操作说明写到一半。晚上大部分时间都在KFC摸鱼打鬼岛,面对Rider红鬼掏出了好久
- 浅谈从机器学习到深度学习
江小北
机器学习机器学习
机器学习分为频率派和贝叶斯派。频率派发展成统计机器学习,贝叶斯派发展成概率图模型。频率派有“四化”,如图所示,正则化有很多种,在损失函数后面加一个惩罚项,比如线性回归里面的L1和L2正则化,每个模型的正则化项不一定相同;核化用处非常多,常见的有kernelSVM,另外在降维也有用到,比如kernelPCA。集成方法现在非常多,bagging代表是随机森林,boosting代表有AdaBoost,G
- 概率论入门之《统计机器学习导论》阅读笔记(第一,二章)
生而为弟
第一章统计机器学习第一章主要介绍了机器学习的分类:监督学习,非监督学习,强化学习。然后介绍了监督学习的三大主要任务:回归,分类,排序,以及非监督学习的聚类。最后稍稍介绍了一下机器学习中的其它技术:集成学习,张量学习,在线学习,迁移学习,度量学习。当然这些与概率论关系不大,因此笔者在此略过。下面着重记录第二章的阅读笔记。第二章随机变量与概率分布2.1数学基础imageimageimageimage以
- 监督学习方法与无监督学习方法总结
daisyxyr
李航统计学习方法笔记学习机器学习算法
(一)监督学习10种监督学习方法特点的概括汇总如下表:(二)无监督学习八种常用的统计机器学习方法,即聚类方法(包括层次聚类与k均值聚类)、奇异值分解(SVD)、主成分分析(PCA)、潜在语义分析(LSA)、概率潜在语义分析(PLSA)、马尔可夫链蒙特卡罗法(MCMC)、潜在狄利克雷分配(LDA)、PageRank算法还有另外三种常用的统计机器学习方法,即非负矩阵分解(NMF)、变分推理、幂法这些方
- 【统计机器学习】考核标准 + 课堂练习题汇总
MorleyOlsen
专业选修课系列机器学习人工智能
写在前面1:上课老师是:付学谦老师及其博士助教。上课带纸笔和人就行。2:上课的内容和作业量相比于其他选修课较为轻松,且只有大作业和论文报告,没有考试!!!基本上最后会留20min给同学们写课堂练习题。3:最好拍下每张ppt,指不定哪道题就用上了。以及现在是GPT时代,善用工具会事半功倍。4:平时分而言,我个人觉得挺玄学的,每次课都做前排且上课听讲并回答问题,最后也只拿了B+。5:所以,只是为了刷成
- 《统计机器学习》学习笔记第三章之K近邻
资料加载中
机器学习统计学习方法
本文完全转载于https://www.cnblogs.com/pinard/p/6061661.html标记了一些自己认为比较重要的句子,同时自己为了以后回顾方便就搬了过来。这是一个关于统计机器学习的系列笔记。K近邻法(k-nearestneighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用。比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏
- 李航老师《统计学习方法》第1章阅读笔记
Chen_Chance
学习方法笔记人工智能
1.1统计学习统计学习的特点统计学习:计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析现在人们提及机器学习时,往往指统计机器学习,所以可以认为本书介绍的是机器学习方法统计学习的对象统计学习研究的对象是数据(data),统计学习关于数据的基本假设是同类数据具有一定的统计规律性,这是统计学习的前提。e.g.用随机变量描述数据的特征,用概率分布描述数据的统计规律在统计学习中,以变量或变量组表
- 从统计语言模型到预训练语言模型---统计语言模型
hanscalZheng
大语言模型语言模型人工智能自然语言处理
语言模型从历史上来看,自然语言处理的研究范式变化是从规则到统计,从统计机器学习到基于神经网络的深度学习,这同时也是语言模型发展的历史。要了解语言模型的发展历史,首先我们需要认识什么是语言模型。语言模型的目标是建模自然语言的概率分布,即确定语言中任意词序列的概率,它提供了从概率统计角度建模语言文字的独特视角。语言模型在自然语言处理中用广泛的应用,在语音识别、语法纠错、机器翻译、语言生成等任务中均发挥
- 统计机器学习(二)-- 概率(3、4、5、6)
雪茸川
概率1.1概率空间和事件样本空间是实验所有可能结果的空间,,是一个元素或者实现事件是样本空间的子集测度论相关巴拉巴拉随机变量离散随机变量(0-1)分布数学期望二项分布数学期望性质函数n:整数推广NegativeBinomialDistribution几何分布数学期望比如丢硬币得到一次正面所需要的次数泊松分布泊松定理注意:意味着当n很大的时候必定很小可能场景:一本书中一页的印刷错误,一天内病人的人数
- 【AI】机器学习——绪论
AmosTian
AI#机器学习人工智能机器学习AI
文章目录1.1机器学习概念1.1.1定义统计机器学习与数据挖掘区别机器学习前提1.1.2术语1.1.3特点以数据为研究对象目标方法——基于数据构建模型SML三要素SML步骤1.2分类1.2.1参数化/非参数化方法1.2.2按算法分类1.2.3按模型分类概率模型非概率模型逻辑斯蒂回归1.2.4基本分类监督学习分类符号表示形式化特征无监督模型特征符号表示形式化强化学习半监督学习主动学习1.2.5按技巧
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D