CEML阅读笔记

读了文章CEML: a Coordinated Runtime System for Efficient Machine Learning on Heterogeneous Computing Systems。

CEML:

Abstract. Heterogeneous computing is rapidly emerging as a promising solution for efficient machine learning. Despite the extensive prior works, system software support for efficient machine learning still remains unexplored in the context of heterogeneous computing. To bridge this gap, we propose CEML, a coordinated runtime system for efficient machine learning on heterogeneous computing systems. CEML dynamically analyzes the performance and power characteristics of the target machinelearning application and robustly adapts the system state to enhance its efficiency on heterogeneous computing systems. Our quantitative evaluation demonstrates that CEML significantly improves the efficiency of machine-learning applications on a full heterogeneous computing system.

文章基于TensorFlow,利用了TensorFlow的stage特性,例如训练20000张图片的例子,每次训练10张,则该应用具有2000个stage。在初始stage阶段分别获取CPU GPU MEM的频率和性能 功耗直接的关系参数,利用文章中的公式1 2 3计算出应用程序执行的相关系数,利用系数求解出程序的最有配置策略,在通过运行是系统把策略施加到系统层面。该文章的创新点是把cpu gpu mem的调节集成到一起,放入运行时系统中实现,而不是像以往的文章12-15,17那样,只研究其中一个因素。

你可能感兴趣的:(研究论文,研究论文)