- 编程算法:技术创新的引擎与业务增长的核心驱动力
在数字经济时代,算法已成为推动技术创新与业务增长的隐形引擎。从存内计算突破冯·诺依曼瓶颈,到动态规划优化万亿级金融交易,编程算法正在重塑产业竞争格局。一、存内计算:突破冯·诺依曼瓶颈的算法革命1.1存内计算的基本原理传统计算架构中90%的能耗消耗在数据搬运上。存内计算(Processing-in-Memory)通过直接在存储单元执行计算,实现能效10-100倍提升:#传统计算vs存内计算能耗模型i
- 算法刷题-动态规划之背包问题
1.背包问题之01(4.30)题目描述小明有一个容量为VV的背包。这天他去商场购物,商场一共有NN件物品,第ii件物品的体积为wiwi,价值为vivi。小明想知道在购买的物品总体积不超过VV的情况下所能获得的最大价值为多少,请你帮他算算。输入描述输入第11行包含两个正整数N,VN,V,表示商场物品的数量和小明的背包容量。第2∼N+12∼N+1行包含22个正整数w,vw,v,表示物品的体积和价值。1
- 【春招笔试真题】饿了么2025.03.07-算法岗真题
春秋招笔试突围
最新互联网春秋招试题合集算法代理模式
第一题:数据特征最大化1️⃣:找出数组中的最大元素,返回其平方难度:简单这是一道技巧性题目,乍看需要枚举所有子数组计算异或和和最大公约数。但通过分析可以发现,对任意单元素子数组,其异或值和最大公约数都是元素本身,因此乘积是元素的平方。可以证明,最大元素的平方就是整个问题的最优解。时间复杂度O(n)。第二题:同质接龙字符串1️⃣:记忆化搜索+动态规划2️⃣:使用状态编码降低存储复杂度难度:中等这道题
- 【华为机试】121. 买卖股票的最佳时机
不爱熬夜的Coder
算法华为机试golang华为算法华为od深度优先数据结构
文章目录121.买卖股票的最佳时机描述示例1示例2示例3提示解题思路方法一:一次遍历(推荐)方法二:暴力解法方法三:动态规划方法四:分治法代码实现复杂度分析测试用例完整题解代码121.买卖股票的最佳时机描述给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大
- 120.三角形最小路径和
HamletSunS
题解:给出一个三角形,求从顶点到最底层的路径的最小和方法:动态规划2个参数,i,j,代表从(i,j)出发直到底层的最小路径和。f(i,j)=t[i][j]+min(f[i+1][j],f[i+1][j+1])优化方案:根据dp的方程可以发现,当前元素只与下一行的同列和右侧有关系,与左侧无关。那么优化思路就是只用1行,从左开始往右更新即可。这样就可以只用一维数组dp[j]代表从某行(通过不断更新可更
- Floyd算法详解——包括解题步骤与编程
HOLD ON!
算法
Floyd算法详解——包括解题步骤与编程SweeNeil展开一、Floyd算法原理Floyd算法是一个经典的动态规划算法,它又被称为插点法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。Floyd算法是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,算法目标是寻找从点i到点j的最短路径。从任意节点i到任意节点j的最短路径不外乎2种
- 算法入门:BFS与DFS详解(C++实现)
Jay_515
算法算法
深度优先与广度优先是算法世界的两大基石,掌握它们如同获得探索算法宇宙的钥匙一、初识BFS与DFS什么是BFS和DFS?BFS(广度优先搜索):逐层遍历数据结构,先访问离起点最近的节点DFS(深度优先搜索):沿着分支深入到底部,再回溯探索其他分支核心应用场景算法典型应用场景BFS最短路径问题、社交网络好友推荐、连通块分析DFS路径存在性判断、拓扑排序、解决回溯问题、图连通性检测二、BFS算法详解算法
- C++ BFS实例:从入门到实战
KENYCHEN奉孝
C++c++开发语言ai
基于C++的BFS(广度优先搜索)实例以下是基于C++的BFS(广度优先搜索)实例,涵盖常见应用场景,包括图遍历、最短路径、矩阵搜索等。每个例子均包含核心代码片段和关键思路说明。基本BFS框架模板#include#include#includeusingnamespacestd;voidbfs(vector>&graph,intstart){queueq;unordered_setvisited;
- 动态规划 (Dynamic Programming) 算法概念-JS示例
香蕉可乐荷包蛋
#动态规划算法动态规划javascript
核心概念解析动态规划是一种用于解决具有重叠子问题和最优子结构特性的复杂问题的算法设计技术。它通过将复杂问题分解为更小的子问题,并存储子问题的解来避免重复计算,从而提高效率。关键特性最优子结构:问题的最优解包含子问题的最优解重叠子问题:在递归求解过程中,相同的子问题被多次计算无后效性:某个阶段的状态一旦确定,就不会受到后续决策的影响动态规划与分治法的区别分治法:子问题不重叠,各自独立求解动态规划:子
- 动态规划 (Dynamic Programming) 算法概念-Python示例
香蕉可乐荷包蛋
#动态规划算法动态规划python
Python实例详解1.斐波那契数列#传统递归方法-效率低下O(2^n)deffibonacci_recursive(n):ifn=weights[i-1]:dp[i][w]=max(dp[i][w],dp[i-1][w-weights[i-1]]+values[i-1])returndp[n][capacity]#空间优化版本defknapsack_optimized(weights,value
- 用动态规划方法求解0-1背包问题
逢着
算法动态规划算法c++
如果你对动态规划方法求解0-1背包问题的思路不清晰,直接阅读代码并不是一个好的建议。推荐一个B站up主的视频讲解:0/1背包问题-动态规划练习地址(B站视频配套的网址)#includeusingnamespacestd;constintbagVolume=6;//背包体积constintitemNumber=4;//准备放入的物品数量constintrows=itemNumber+1;//tabl
- 算法在前端框架中的集成
引言算法是前端开发中提升性能和用户体验的重要工具。随着Web应用复杂性的增加,现代前端框架如React、Vue和Angular提供了强大的工具集,使得将算法与框架特性(如状态管理、虚拟DOM和组件化)无缝集成成为可能。从排序算法优化列表渲染到动态规划提升复杂计算效率,算法的集成能够显著改善应用的响应速度和资源利用率。本文将探讨如何将常见算法(排序、搜索和动态规划)集成到前端框架中,重点介绍框架特性
- 最短Hamilton路径
「止于纸扇」
#代码模板C++学习笔记算法数据结构
最短Hamilton路径在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。原理哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。对于一个有n个顶点的无向图G(V,E),我们可以使用一个二维数组dp[i][j]来表
- 算法日记 42 day 图论
橘子遇见BUG
算法日记算法图论
今天来看看广度优先搜索,并且写几个题。刷到这里我才想起来,当时第一次面试的时候问的就是这个题,当时大概知道一点思路,但不清楚是图论方面的,更别说写出来了。广度优先搜索(BFS)不同于深度优先,广度优先讲究的是先遍历完一层,在遍历下一层,就这转圈圈,直到遍历完所有。就像这样那么对于广搜的写法来说,不管是队列,栈,或者数组都可以。不过方便遍历,大多使用的是队列,接下来的题目我也使用队列。那么广搜的代码
- 最长递增子序列(LIS)时间复杂度详解
高冷小伙
算法总结算法动态规划数据结构leetcode
问题描述所谓最长递增子序列,就是从一个数组中,从左至右选择若干个数,使得组成的新序列长度最长。解题思路1.转换成最长公共子序列问题待更新~~~~~2.普通动态规划(时间复杂度O(n^2))普通的动态规划思路就是先初始化len[i]为1,然后遍历下标为0~i-1的所有元素,从而对len[i]进行更新;代码如下:voidsolve2(intnum[],intl){intlen[100];memset(
- 动态规划:从入门到精通
本文全章节一共一万七千多字,详细介绍动态规划基础与进阶技巧,全篇以代码为主,认真读完理解,你对动态规划的理解一定会有一个质的飞跃。一、动态规划简介:动态规划(DynamicProgramming,简称DP)是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。它的核心思想是:将复杂问题分解成子问题,保存子问题的解,避免重复计算。动态规划本质上是一种用空间换时间的算法思想:时间优化:避免
- 【c++】200*200 01灰度矩阵求所有的连通区域坐标集合
聿默
#c++c++矩阵深度优先
1.题目题目要求:给定一个200x200的01灰度矩阵,求所有的连通区域坐标集合。连通区域:相邻的1(上下左右,或者也可以包括对角线,这里通常使用4连通或8连通)。这里我们假设使用4连通(上下左右)即可,但题目没有明确,我们可以先按4连通实现,如果需要8连通可以稍作修改。2.算法思想算法思想:使用深度优先搜索(DFS)或广度优先搜索(BFS)来遍历每个连通区域。由于矩阵大小为200x200,DFS
- 【动态规划】背包dp
算法阿诺
动态规划动态规划算法
青春没有售价,dp速学一下。参考文章01背包在01背包问题中,每个物品只能放一次进背包。dp[i][j]dp[i][j]dp[i][j]:第i个物品,j容量状态转移公式:f[i][j]=max(f[i−1][j],f[i−1][j−w[i]]+pri[i])f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+pri[i])f[i][j]=max(f[i−1][j],f[i−1
- 【每日一题】补档 CF1875 D. Jellyfish and Mex | 动态规划 | 中等
题目内容原题链接给定一个长度为nnn的数组aaa,每次选择一个元素aia_iai删除,删除的代价为删除后剩余元素的mexmexmex,mex(a)mex(a)mex(a)是指aaa中未出现过的最小的非负数。问将数组aaa删除为空的操作的最小代价。数据范围1≤n≤50001\leqn\leq50001≤n≤50000≤ai≤1090\leqa_i\leq10^90≤ai≤109题解考虑mex(a)m
- 图书推荐-对初学者有好的算法书籍《Hello算法》
_abab
图书推荐算法
关于本书Hello算法本书是开源免费的数据结构与算法入门教程,采用动画图解和可运行代码示例讲解主要内容涵盖复杂度分析、数据结构(数组/链表/栈/队列/树/图等)、算法(搜索/排序/动态规划等)适合算法初学者建立知识体系,可作为刷题工具库如何使用本书推荐结合动画图解理解重点难点,所有代码提供Java等语言版本包含在线运行功能,可通过GitHub仓库获取源码,各章节设有讨论区学习路线分三阶段:建立基础
- 代码随想录算法训练营Day59 || 图论part 09
傲世尊
算法图论
dijkstra算法(堆优化版):利用小顶堆来减少一层for循环。因为要存储边的权值,邻接表里就需要存pair了。Bellman_ford算法精讲,卡玛网94题:变化在于权值出现了负数,用动态规划思想来维护MinDist数组。核心在于对所有边进行n-1次松弛处理,就可以得出起始点到所有节点的最短路径。图论章节主打一个走马观花属于是。
- LeetCode热题100--121
8Qi8
数据结构与算法leetcode算法贪心算法数据结构动态规划
LeetCode热题100–121.买卖股票的最佳时机题目链接题目类型:贪心、动态规划给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。示例1:输入:[7,1,5,3,6,4]输出
- LLM Agent(大模型智能体)与传统专家系统
一蓑烟雨6668
人工智能
LLMAgent(大模型智能体)与传统专家系统在技术原理、行为模式和应用场景上存在本质差异。以下是两者的核心区别及具体分析:一、核心原理与架构差异特性传统专家系统LLMAgent知识来源依赖人工编写的规则库(if-then逻辑)基于大模型预训练知识+实时学习能力(如工具调用、用户反馈)推理机制静态规则匹配(无法处理规则外场景)动态规划+链式推理(如任务分解、自我反思)适应性固定规则,需人工更新自主
- 基础算法思想(递归篇)
由于今天的练习计划太难了,所以我偷偷的跑去看下一周的练习题了递归虽然做法比较暴力,但是他确实是一个必不可少的思想,而且有一些问题就用递归才更方便,他还是很多算法的基础比如搜索、动态规划、树论等等。接下来就开始逐渐走进递归的世界吧!全排列问题这是最基础的递归以及回溯问题,我们可以不断的通过递归来实现“一条路走到黑”,然后再通过回溯去遍历其他的路径,由于要输出每一个排列组合,所以我们可以用一个数组将目
- 数据结构与算法-09贪心算法&动态规划
阿诚学java
数据结构与算法学习记录贪心算法动态规划ios
贪心算法&动态规划1贪心算法介绍贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法通常用于解决优化问题,如最小化成本、最大化收益等。然而,贪心算法并不总是能够得到全局最优解,但它具有直观、高效、易于实现等优点,因此在许多实际问题中得到了广泛应用。基本思想贪心算法总是从问题的某一个初始解出发。
- Agent架构与工作原理:理解智能体的核心机制
hdzw20
agent学习ai机器学习agent智能体
Agent架构与工作原理:深入理解智能体的核心机制AIAgent的核心组成部分一个完整的AIAgent通常由以下几个核心模块组成:1.规划模块(PlanningModule)规划模块是Agent的"大脑",负责制定行动策略。它接收目标任务,分析当前状态,并制定一系列行动计划。规划可以是:短期规划:针对当前步骤的即时决策长期规划:面向整体目标的战略性规划动态规划:根据执行结果实时调整计划2.记忆模块
- lab2-2 Dijkstra算法求由顶点a到顶点h的最短路径
西一安鲜
算法
1.问题[描述算法问题,首选形式化方式(数学语言),其次才是非形式化方式(日常语言)]对于下图使用Dijkstra算法求由顶点a到顶点h的最短路径,按实验报告模板编写算法。2.解析Dijkstra算法(单源点路径算法,要求:图中不存在负权值边),Dijkstra算法使用了广度优先搜索解决赋权有向图或者无向图的单源最短路径问题,算法最终得到一个最短路径树。Dijkstra(迪杰斯特拉)算法是典型的
- 算法工程师必备:数据结构10大经典算法详解
数据结构与算法学习
数据结构与算法宝典算法数据结构ai
算法工程师必备:数据结构10大经典算法详解关键词:数据结构、经典算法、时间复杂度、应用场景、代码实现摘要:本文是算法工程师的“算法工具箱”指南,系统讲解数据结构领域最核心的10大经典算法(快速排序、归并排序、二分查找、深度优先搜索DFS、广度优先搜索BFS、动态规划、贪心算法、KMP字符串匹配、哈希算法、并查集)。通过生活案例、代码示例、复杂度分析和实战场景,帮你彻底掌握这些算法的原理与应用,真正
- C# 实现:动态规划解决 0/1 背包问题
江沉晚呤时
C#算法代理模式.netcorec#microsoft.net.netcore算法
在生活中,我们经常面临选择和优化的问题。例如:在有限的资源(如时间、金钱、空间等)下,如何选择最有价值的物品?背包问题(KnapsackProblem)就是一种经典的优化问题,广泛应用于项目选择、投资决策、行李打包等领域。今天,我们将深入探讨0/1背包问题,并通过动态规划方法给出一种高效的解决方案。0/1背包问题0/1背包问题的基本描述是:给定一个容量为C的背包。有n个物品,每个物品有一个重量w[
- 动态规划入门(LIS模板)
动态规划是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法能用动态规划解决的问题,需要满足三个条件:最优子结构,无后效性和子问题重叠目录最长上升子序列(LIS)基本思路最长上升子序列贪心优化(二分优化)合唱队形参加算法竞赛!最长上升子序列(LIS)基本思路在做这种类型的题目时我们需要注意明确题目要求的状态一般来说题目问什么,我们的dp[]数组就可以用来表示什么状态之间的转移变换当下状
- java封装继承多态等
麦田的设计者
javaeclipsejvmcencapsulatopn
最近一段时间看了很多的视频却忘记总结了,现在只能想到什么写什么了,希望能起到一个回忆巩固的作用。
1、final关键字
译为:最终的
&
- F5与集群的区别
bijian1013
weblogic集群F5
http请求配置不是通过集群,而是F5;集群是weblogic容器的,如果是ejb接口是通过集群。
F5同集群的差别,主要还是会话复制的问题,F5一把是分发http请求用的,因为http都是无状态的服务,无需关注会话问题,类似
- LeetCode[Math] - #7 Reverse Integer
Cwind
java题解MathLeetCodeAlgorithm
原题链接:#7 Reverse Integer
要求:
按位反转输入的数字
例1: 输入 x = 123, 返回 321
例2: 输入 x = -123, 返回 -321
难度:简单
分析:
对于一般情况,首先保存输入数字的符号,然后每次取输入的末位(x%10)作为输出的高位(result = result*10 + x%10)即可。但
- BufferedOutputStream
周凡杨
首先说一下这个大批量,是指有上千万的数据量。
例子:
有一张短信历史表,其数据有上千万条数据,要进行数据备份到文本文件,就是执行如下SQL然后将结果集写入到文件中!
select t.msisd
- linux下模拟按键输入和鼠标
被触发
linux
查看/dev/input/eventX是什么类型的事件, cat /proc/bus/input/devices
设备有着自己特殊的按键键码,我需要将一些标准的按键,比如0-9,X-Z等模拟成标准按键,比如KEY_0,KEY-Z等,所以需要用到按键 模拟,具体方法就是操作/dev/input/event1文件,向它写入个input_event结构体就可以模拟按键的输入了。
linux/in
- ContentProvider初体验
肆无忌惮_
ContentProvider
ContentProvider在安卓开发中非常重要。与Activity,Service,BroadcastReceiver并称安卓组件四大天王。
在android中的作用是用来对外共享数据。因为安卓程序的数据库文件存放在data/data/packagename里面,这里面的文件默认都是私有的,别的程序无法访问。
如果QQ游戏想访问手机QQ的帐号信息一键登录,那么就需要使用内容提供者COnte
- 关于Spring MVC项目(maven)中通过fileupload上传文件
843977358
mybatisspring mvc修改头像上传文件upload
Spring MVC 中通过fileupload上传文件,其中项目使用maven管理。
1.上传文件首先需要的是导入相关支持jar包:commons-fileupload.jar,commons-io.jar
因为我是用的maven管理项目,所以要在pom文件中配置(每个人的jar包位置根据实际情况定)
<!-- 文件上传 start by zhangyd-c --&g
- 使用svnkit api,纯java操作svn,实现svn提交,更新等操作
aigo
svnkit
原文:http://blog.csdn.net/hardwin/article/details/7963318
import java.io.File;
import org.apache.log4j.Logger;
import org.tmatesoft.svn.core.SVNCommitInfo;
import org.tmateso
- 对比浏览器,casperjs,httpclient的Header信息
alleni123
爬虫crawlerheader
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse res) throws ServletException, IOException
{
String type=req.getParameter("type");
Enumeration es=re
- java.io操作 DataInputStream和DataOutputStream基本数据流
百合不是茶
java流
1,java中如果不保存整个对象,只保存类中的属性,那么我们可以使用本篇文章中的方法,如果要保存整个对象 先将类实例化 后面的文章将详细写到
2,DataInputStream 是java.io包中一个数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型。应用程序可以使用数据输出流写入稍后由数据输入流读取的数据。
- 车辆保险理赔案例
bijian1013
车险
理赔案例:
一货运车,运输公司为车辆购买了机动车商业险和交强险,也买了安全生产责任险,运输一车烟花爆竹,在行驶途中发生爆炸,出现车毁、货损、司机亡、炸死一路人、炸毁一间民宅等惨剧,针对这几种情况,该如何赔付。
赔付建议和方案:
客户所买交强险在这里不起作用,因为交强险的赔付前提是:“机动车发生道路交通意外事故”;
如果是交通意外事故引发的爆炸,则优先适用交强险条款进行赔付,不足的部分由商业
- 学习Spring必学的Java基础知识(5)—注解
bijian1013
javaspring
文章来源:http://www.iteye.com/topic/1123823,整理在我的博客有两个目的:一个是原文确实很不错,通俗易懂,督促自已将博主的这一系列关于Spring文章都学完;另一个原因是为免原文被博主删除,在此记录,方便以后查找阅读。
有必要对
- 【Struts2一】Struts2 Hello World
bit1129
Hello world
Struts2 Hello World应用的基本步骤
创建Struts2的Hello World应用,包括如下几步:
1.配置web.xml
2.创建Action
3.创建struts.xml,配置Action
4.启动web server,通过浏览器访问
配置web.xml
<?xml version="1.0" encoding="
- 【Avro二】Avro RPC框架
bit1129
rpc
1. Avro RPC简介 1.1. RPC
RPC逻辑上分为二层,一是传输层,负责网络通信;二是协议层,将数据按照一定协议格式打包和解包
从序列化方式来看,Apache Thrift 和Google的Protocol Buffers和Avro应该是属于同一个级别的框架,都能跨语言,性能优秀,数据精简,但是Avro的动态模式(不用生成代码,而且性能很好)这个特点让人非常喜欢,比较适合R
- lua set get cookie
ronin47
lua cookie
lua:
local access_token = ngx.var.cookie_SGAccessToken
if access_token then
ngx.header["Set-Cookie"] = "SGAccessToken="..access_token.."; path=/;Max-Age=3000"
end
- java-打印不大于N的质数
bylijinnan
java
public class PrimeNumber {
/**
* 寻找不大于N的质数
*/
public static void main(String[] args) {
int n=100;
PrimeNumber pn=new PrimeNumber();
pn.printPrimeNumber(n);
System.out.print
- Spring源码学习-PropertyPlaceholderHelper
bylijinnan
javaspring
今天在看Spring 3.0.0.RELEASE的源码,发现PropertyPlaceholderHelper的一个bug
当时觉得奇怪,上网一搜,果然是个bug,不过早就有人发现了,且已经修复:
详见:
http://forum.spring.io/forum/spring-projects/container/88107-propertyplaceholderhelper-bug
- [逻辑与拓扑]布尔逻辑与拓扑结构的结合会产生什么?
comsci
拓扑
如果我们已经在一个工作流的节点中嵌入了可以进行逻辑推理的代码,那么成百上千个这样的节点如果组成一个拓扑网络,而这个网络是可以自动遍历的,非线性的拓扑计算模型和节点内部的布尔逻辑处理的结合,会产生什么样的结果呢?
是否可以形成一种新的模糊语言识别和处理模型呢? 大家有兴趣可以试试,用软件搞这些有个好处,就是花钱比较少,就算不成
- ITEYE 都换百度推广了
cuisuqiang
GoogleAdSense百度推广广告外快
以前ITEYE的广告都是谷歌的Google AdSense,现在都换成百度推广了。
为什么个人博客设置里面还是Google AdSense呢?
都知道Google AdSense不好申请,这在ITEYE上也不是讨论了一两天了,强烈建议ITEYE换掉Google AdSense。至少,用一个好申请的吧。
什么时候能从ITEYE上来点外快,哪怕少点
- 新浪微博技术架构分析
dalan_123
新浪微博架构
新浪微博在短短一年时间内从零发展到五千万用户,我们的基层架构也发展了几个版本。第一版就是是非常快的,我们可以非常快的实现我们的模块。我们看一下技术特点,微博这个产品从架构上来分析,它需要解决的是发表和订阅的问题。我们第一版采用的是推的消息模式,假如说我们一个明星用户他有10万个粉丝,那就是说用户发表一条微博的时候,我们把这个微博消息攒成10万份,这样就是很简单了,第一版的架构实际上就是这两行字。第
- 玩转ARP攻击
dcj3sjt126com
r
我写这片文章只是想让你明白深刻理解某一协议的好处。高手免看。如果有人利用这片文章所做的一切事情,盖不负责。 网上关于ARP的资料已经很多了,就不用我都说了。 用某一位高手的话来说,“我们能做的事情很多,唯一受限制的是我们的创造力和想象力”。 ARP也是如此。 以下讨论的机子有 一个要攻击的机子:10.5.4.178 硬件地址:52:54:4C:98
- PHP编码规范
dcj3sjt126com
编码规范
一、文件格式
1. 对于只含有 php 代码的文件,我们将在文件结尾处忽略掉 "?>" 。这是为了防止多余的空格或者其它字符影响到代码。例如:<?php$foo = 'foo';2. 缩进应该能够反映出代码的逻辑结果,尽量使用四个空格,禁止使用制表符TAB,因为这样能够保证有跨客户端编程器软件的灵活性。例
- linux 脱机管理(nohup)
eksliang
linux nohupnohup
脱机管理 nohup
转载请出自出处:http://eksliang.iteye.com/blog/2166699
nohup可以让你在脱机或者注销系统后,还能够让工作继续进行。他的语法如下
nohup [命令与参数] --在终端机前台工作
nohup [命令与参数] & --在终端机后台工作
但是这个命令需要注意的是,nohup并不支持bash的内置命令,所
- BusinessObjects Enterprise Java SDK
greemranqq
javaBOSAPCrystal Reports
最近项目用到oracle_ADF 从SAP/BO 上调用 水晶报表,资料比较少,我做一个简单的分享,给和我一样的新手 提供更多的便利。
首先,我是尝试用JAVA JSP 去访问的。
官方API:http://devlibrary.businessobjects.com/BusinessObjectsxi/en/en/BOE_SDK/boesdk_ja
- 系统负载剧变下的管控策略
iamzhongyong
高并发
假如目前的系统有100台机器,能够支撑每天1亿的点击量(这个就简单比喻一下),然后系统流量剧变了要,我如何应对,系统有那些策略可以处理,这里总结了一下之前的一些做法。
1、水平扩展
这个最容易理解,加机器,这样的话对于系统刚刚开始的伸缩性设计要求比较高,能够非常灵活的添加机器,来应对流量的变化。
2、系统分组
假如系统服务的业务不同,有优先级高的,有优先级低的,那就让不同的业务调用提前分组
- BitTorrent DHT 协议中文翻译
justjavac
bit
前言
做了一个磁力链接和BT种子的搜索引擎 {Magnet & Torrent},因此把 DHT 协议重新看了一遍。
BEP: 5Title: DHT ProtocolVersion: 3dec52cb3ae103ce22358e3894b31cad47a6f22bLast-Modified: Tue Apr 2 16:51:45 2013 -070
- Ubuntu下Java环境的搭建
macroli
java工作ubuntu
配置命令:
$sudo apt-get install ubuntu-restricted-extras
再运行如下命令:
$sudo apt-get install sun-java6-jdk
待安装完毕后选择默认Java.
$sudo update- alternatives --config java
安装过程提示选择,输入“2”即可,然后按回车键确定。
- js字符串转日期(兼容IE所有版本)
qiaolevip
TODateStringIE
/**
* 字符串转时间(yyyy-MM-dd HH:mm:ss)
* result (分钟)
*/
stringToDate : function(fDate){
var fullDate = fDate.split(" ")[0].split("-");
var fullTime = fDate.split("
- 【数据挖掘学习】关联规则算法Apriori的学习与SQL简单实现购物篮分析
superlxw1234
sql数据挖掘关联规则
关联规则挖掘用于寻找给定数据集中项之间的有趣的关联或相关关系。
关联规则揭示了数据项间的未知的依赖关系,根据所挖掘的关联关系,可以从一个数据对象的信息来推断另一个数据对象的信息。
例如购物篮分析。牛奶 ⇒ 面包 [支持度:3%,置信度:40%] 支持度3%:意味3%顾客同时购买牛奶和面包。 置信度40%:意味购买牛奶的顾客40%也购买面包。 规则的支持度和置信度是两个规则兴
- Spring 5.0 的系统需求,期待你的反馈
wiselyman
spring
Spring 5.0将在2016年发布。Spring5.0将支持JDK 9。
Spring 5.0的特性计划还在工作中,请保持关注,所以作者希望从使用者得到关于Spring 5.0系统需求方面的反馈。