若有不正之处请多多谅解,并欢迎批评指正。
请尊重作者劳动成果,转载请标明原文链接:
http://www.cnblogs.com/go2sea/p/5634701.html
ReentrantLock提供了标准的互斥操作,但在应用中,我们对一个资源的访问有两种方式:读和写,读操作一般不会影响数据的一致性问题。但如果我们使用ReentrantLock,则在需要在读操作的时候也独占锁,这会导致并发效率大大降低。JUC包提供了读写锁ReentrantReadWriteLock,使得读写锁分离,在上述情境下,应用读写锁相对于使用独占锁,并发性能得到较大提高。
我们先来大致了解一下ReentrantReadWriteLock的性质:
①基本性质:读锁是一个共享锁,写锁是一个独占锁。读锁能同时被多个线程获取,写锁只能被一个线程获取。读锁和写锁不能同时存在。
①重入性:一个线程可以多次重复获取读锁和写锁。
③锁降级:一个线程在已经获取写锁的情况下,可以再次获取读锁,如果线程又释放了写锁,就完成了一次锁降级。
④锁升级:ReentrantReadWriteLock不支持锁升级。一个线程在获取读锁的情况下,如果试图去获取写锁,将会导致死锁(后面会详细说明)。
⑤获取锁中断:提供了可中断的lock方法。
⑥重入数:读锁和写锁的重入上限为65535(所有线程获取的锁的总数,为什么是这个值后面会详细说明)。
⑦公平性:ReentrantReadWriteLock提供了公平&非公平两种工作模式。
ReentrantReadWriteLock实现了ReadWriteLock接口:
public interface ReadWriteLock { Lock readLock(); Lock writeLock(); }
这个接口之有两个方法,分别返回读锁和写锁。ReentrantReadWriteLock定义了两个内部类:readLock&writeLock。
ReentrantReadWriteLock提供了两种自定义的同步器:FairSync&NonfairSync:
static final class NonfairSync extends Sync { private static final long serialVersionUID = -8159625535654395037L; final boolean writerShouldBlock() { return false; // writers can always barge } final boolean readerShouldBlock() { return apparentlyFirstQueuedIsExclusive(); } } static final class FairSync extends Sync { private static final long serialVersionUID = -2274990926593161451L; final boolean writerShouldBlock() { return hasQueuedPredecessors(); } final boolean readerShouldBlock() { return hasQueuedPredecessors(); } }
他们都继承自父类同步器Sync,而他们只定义了writerShouldBlock&readerShouldBlock方法。这两个方法用在获取锁的操作中,表示要获取锁的线程需要到等待队列中,还是可以直接尝试获取。后面我们会详细分析。
在自定义的同步器Sync中,定义了锁数量的记录方式:
static final int SHARED_SHIFT = 16; static final int SHARED_UNIT = (1 << SHARED_SHIFT); static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1; static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1; /** Returns the number of shared holds represented in count */ static int sharedCount(int c) { return c >>> SHARED_SHIFT; } /** Returns the number of exclusive holds represented in count */ static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
可见,ReentrantReadWriteLock用一个32位无符号数记录锁的数量,高16位记录共享锁(读锁)的数量,第16位记录独占锁(写锁)的数量,因此锁的数量上限都是65535。
源代码:


/* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * * * * * * * * * * * * * * * * * * * * */ /* * * * * * * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent.locks; import java.util.concurrent.TimeUnit; import java.util.Collection; /** * An implementation of {@link ReadWriteLock} supporting similar * semantics to {@link ReentrantLock}. ** * ReentrantReadWriteLocks can be used to improve concurrency in some * uses of some kinds of Collections. This is typically worthwhile * only when the collections are expected to be large, accessed by * more reader threads than writer threads, and entail operations with * overhead that outweighs synchronization overhead. For example, here * is a class using a TreeMap that is expected to be large and * concurrently accessed. * *This class has the following properties: * *
*
@link ReadLock#tryLock()} and {@link WriteLock#tryLock()} methods * do not honor this fair setting and will immediately acquire the lock * if it is possible, regardless of waiting threads.) *- Acquisition order * *
This class does not impose a reader or writer preference * ordering for lock access. However, it does support an optional * fairness policy. * *
*
- Non-fair mode (default) *
- When constructed as non-fair (the default), the order of entry * to the read and write lock is unspecified, subject to reentrancy * constraints. A nonfair lock that is continuously contended may * indefinitely postpone one or more reader or writer threads, but * will normally have higher throughput than a fair lock. * *
- Fair mode *
- When constructed as fair, threads contend for entry using an * approximately arrival-order policy. When the currently held lock * is released, either the longest-waiting single writer thread will * be assigned the write lock, or if there is a group of reader threads * waiting longer than all waiting writer threads, that group will be * assigned the read lock. * *
A thread that tries to acquire a fair read lock (non-reentrantly) * will block if either the write lock is held, or there is a waiting * writer thread. The thread will not acquire the read lock until * after the oldest currently waiting writer thread has acquired and * released the write lock. Of course, if a waiting writer abandons * its wait, leaving one or more reader threads as the longest waiters * in the queue with the write lock free, then those readers will be * assigned the read lock. * *
A thread that tries to acquire a fair write lock (non-reentrantly) * will block unless both the read lock and write lock are free (which * implies there are no waiting threads). (Note that the non-blocking * {
* * *
Reentrancy * * @link ReentrantLock}. Non-reentrant * readers are not allowed until all write locks held by the writing * thread have been released. * *This lock allows both readers and writers to reacquire read or * write locks in the style of a {
Additionally, a writer can acquire the read lock, but not * vice-versa. Among other applications, reentrancy can be useful * when write locks are held during calls or callbacks to methods that * perform reads under read locks. If a reader tries to acquire the * write lock it will never succeed. * *
Lock downgrading * Reentrancy also allows downgrading from the write lock to a read lock, * by acquiring the write lock, then the read lock and then releasing the * write lock. However, upgrading from a read lock to the write lock is * not possible. * *
Interruption of lock acquisition * The read lock and write lock both support interruption during lock * acquisition. * *
{ @link Condition} support *The write lock provides a {
@link Condition} implementation that * behaves in the same way, with respect to the write lock, as the * {@link Condition} implementation provided by * {@link ReentrantLock#newCondition} does for {@link ReentrantLock}. * This {@link Condition} can, of course, only be used with the write lock. * *The read lock does not support a {
@link Condition} and * {@code readLock().newCondition()} throws * {@code UnsupportedOperationException}. * *Instrumentation * @code * class CachedData { * Object data; * volatile boolean cacheValid; * final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); * * void processCachedData() { * rwl.readLock().lock(); * if (!cacheValid) { * // Must release read lock before acquiring write lock * rwl.readLock().unlock(); * rwl.writeLock().lock(); * try { * // Recheck state because another thread might have * // acquired write lock and changed state before we did. * if (!cacheValid) { * data = ... * cacheValid = true; * } * // Downgrade by acquiring read lock before releasing write lock * rwl.readLock().lock(); * } finally { * rwl.writeLock().unlock(); // Unlock write, still hold read * } * } * * try { * use(data); * } finally { * rwl.readLock().unlock(); * } * } * }}This class supports methods to determine whether locks * are held or contended. These methods are designed for monitoring * system state, not for synchronization control. * * *
Serialization of this class behaves in the same way as built-in * locks: a deserialized lock is in the unlocked state, regardless of * its state when serialized. * *
Sample usages. Here is a code sketch showing how to perform * lock downgrading after updating a cache (exception handling is * particularly tricky when handling multiple locks in a non-nested * fashion): * *
{
{@code * class RWDictionary { * private final Map* *m = new TreeMap (); * private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); * private final Lock r = rwl.readLock(); * private final Lock w = rwl.writeLock(); * * public Data get(String key) { * r.lock(); * try { return m.get(key); } * finally { r.unlock(); } * } * public String[] allKeys() { * r.lock(); * try { return m.keySet().toArray(); } * finally { r.unlock(); } * } * public Data put(String key, Data value) { * w.lock(); * try { return m.put(key, value); } * finally { w.unlock(); } * } * public void clear() { * w.lock(); * try { m.clear(); } * finally { w.unlock(); } * } * }}
Implementation Notes
* *This lock supports a maximum of 65535 recursive write locks
* and 65535 read locks. Attempts to exceed these limits result in
* {@link Error} throws from locking methods.
*
* @since 1.5
* @author Doug Lea
*/
public class ReentrantReadWriteLock
implements ReadWriteLock, java.io.Serializable {
private static final long serialVersionUID = -6992448646407690164L;
/** Inner class providing readlock */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** Inner class providing writelock */
private final ReentrantReadWriteLock.WriteLock writerLock;
/** Performs all synchronization mechanics */
final Sync sync;
/**
* Creates a new {@code ReentrantReadWriteLock} with
* default (nonfair) ordering properties.
*/
public ReentrantReadWriteLock() {
this(false);
}
/**
* Creates a new {@code ReentrantReadWriteLock} with
* the given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
public ReentrantReadWriteLock.ReadLock readLock() { return readerLock; }
/**
* Synchronization implementation for ReentrantReadWriteLock.
* Subclassed into fair and nonfair versions.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 6317671515068378041L;
/*
* Read vs write count extraction constants and functions.
* Lock state is logically divided into two unsigned shorts:
* The lower one representing the exclusive (writer) lock hold count,
* and the upper the shared (reader) hold count.
*/
static final int SHARED_SHIFT = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;
/** Returns the number of shared holds represented in count */
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
/** Returns the number of exclusive holds represented in count */
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
/**
* A counter for per-thread read hold counts.
* Maintained as a ThreadLocal; cached in cachedHoldCounter
*/
static final class HoldCounter {
int count = 0;
// Use id, not reference, to avoid garbage retention
final long tid = getThreadId(Thread.currentThread());
}
/**
* ThreadLocal subclass. Easiest to explicitly define for sake
* of deserialization mechanics.
*/
static final class ThreadLocalHoldCounter
extends ThreadLocal Can outlive the Thread for which it is caching the read
* hold count, but avoids garbage retention by not retaining a
* reference to the Thread.
*
* Accessed via a benign data race; relies on the memory
* model's final field and out-of-thin-air guarantees.
More precisely, firstReader is the unique thread that last
* changed the shared count from 0 to 1, and has not released the
* read lock since then; null if there is no such thread.
*
* Cannot cause garbage retention unless the thread terminated
* without relinquishing its read locks, since tryReleaseShared
* sets it to null.
*
* Accessed via a benign data race; relies on the memory
* model's out-of-thin-air guarantees for references.
*
* This allows tracking of read holds for uncontended read
* locks to be very cheap.
Acquires the read lock if the write lock is not held by
* another thread and returns immediately.
*
* If the write lock is held by another thread then
* the current thread becomes disabled for thread scheduling
* purposes and lies dormant until the read lock has been acquired.
Acquires the read lock if the write lock is not held
* by another thread and returns immediately.
*
* If the write lock is held by another thread then the
* current thread becomes disabled for thread scheduling
* purposes and lies dormant until one of two things happens:
*
* If the current thread:
*
* In this implementation, as this method is an explicit
* interruption point, preference is given to responding to
* the interrupt over normal or reentrant acquisition of the
* lock.
*
* Acquires the read lock if the write lock is not held by
* another thread and returns immediately with the value
* { If the write lock is held by another thread then
* this method will return immediately with the value
* { Acquires the read lock if the write lock is not held by
* another thread and returns immediately with the value
* { If the write lock is held by another thread then the
* current thread becomes disabled for thread scheduling
* purposes and lies dormant until one of three things happens:
*
* If the read lock is acquired then the value { If the current thread:
*
* If the specified waiting time elapses then the value
* { In this implementation, as this method is an explicit
* interruption point, preference is given to responding to
* the interrupt over normal or reentrant acquisition of the
* lock, and over reporting the elapse of the waiting time.
*
* If the number of readers is now zero then the lock
* is made available for write lock attempts.
Acquires the write lock if neither the read nor write lock
* are held by another thread
* and returns immediately, setting the write lock hold count to
* one.
*
* If the current thread already holds the write lock then the
* hold count is incremented by one and the method returns
* immediately.
*
* If the lock is held by another thread then the current
* thread becomes disabled for thread scheduling purposes and
* lies dormant until the write lock has been acquired, at which
* time the write lock hold count is set to one.
Acquires the write lock if neither the read nor write lock
* are held by another thread
* and returns immediately, setting the write lock hold count to
* one.
*
* If the current thread already holds this lock then the
* hold count is incremented by one and the method returns
* immediately.
*
* If the lock is held by another thread then the current
* thread becomes disabled for thread scheduling purposes and
* lies dormant until one of two things happens:
*
* If the write lock is acquired by the current thread then the
* lock hold count is set to one.
*
* If the current thread:
*
* In this implementation, as this method is an explicit
* interruption point, preference is given to responding to
* the interrupt over normal or reentrant acquisition of the
* lock.
*
* Acquires the write lock if neither the read nor write lock
* are held by another thread
* and returns immediately with the value { If the current thread already holds this lock then the
* hold count is incremented by one and the method returns
* { If the lock is held by another thread then this method
* will return immediately with the value { Acquires the write lock if neither the read nor write lock
* are held by another thread
* and returns immediately with the value { If the current thread already holds this lock then the
* hold count is incremented by one and the method returns
* { If the lock is held by another thread then the current
* thread becomes disabled for thread scheduling purposes and
* lies dormant until one of three things happens:
*
* If the write lock is acquired then the value { If the current thread:
*
* If the specified waiting time elapses then the value
* { In this implementation, as this method is an explicit
* interruption point, preference is given to responding to
* the interrupt over normal or reentrant acquisition of the
* lock, and over reporting the elapse of the waiting time.
*
* If the current thread is the holder of this lock then
* the hold count is decremented. If the hold count is now
* zero then the lock is released. If the current thread is
* not the holder of this lock then { The returned {
*
*
@linkplain Thread#interrupt interrupts}
* the current thread.
*
*
*
*
*
*
@linkplain Thread#interrupt interrupted} while
* acquiring the read lock,
*
*
*
* then {@link InterruptedException} is thrown and the current
* thread's interrupted status is cleared.
*
* {
@code
* if (lock.tryLock() ||
* lock.tryLock(timeout, unit)) {
* ...
* }}
*
*
*
*
@linkplain Thread#interrupt interrupts}
* the current thread; or
*
*
*
*
@linkplain Thread#interrupt interrupted} while
* acquiring the read lock,
*
* then {@link InterruptedException} is thrown and the
* current thread's interrupted status is cleared.
*
*
*
*
@linkplain Thread#interrupt interrupts}
* the current thread.
*
*
*
*
*
*
@linkplain Thread#interrupt interrupted} while
* acquiring the write lock,
*
*
*
* then {@link InterruptedException} is thrown and the current
* thread's interrupted status is cleared.
*
* {
@code
* if (lock.tryLock() ||
* lock.tryLock(timeout, unit)) {
* ...
* }}
*
*
*
*
@linkplain Thread#interrupt interrupts}
* the current thread; or
*
*
*
*
@linkplain Thread#interrupt interrupted} while
* acquiring the write lock,
*
*
*
* then {@link InterruptedException} is thrown and the current
* thread's interrupted status is cleared.
*
*
*
*
@link
* Condition} method is called then an {@link
* IllegalMonitorStateException} is thrown. (Read locks are
* held independently of write locks, so are not checked or
* affected. However it is essentially always an error to
* invoke a condition waiting method when the current thread
* has also acquired read locks, since other threads that
* could unblock it will not be able to acquire the write
* lock.)
*
*
可以看到,相对于JUC包提供的其他锁,ReentrantReadWriteLock的代码量还是比较大的。下面,我们就来分析一下读写锁的工作过程。
一、写锁
1、lock 获取写锁
public void lock() { sync.acquire(1); }
跟我们以前分析的独占锁ReentrantLock一样,lock方法调用AQS的acquire方法:
public final void acquire(int arg) { if (!tryAcquire(arg) && acquireQueued(addWaiter(Node.EXCLUSIVE), arg)) selfInterrupt(); }
acquire方法已经在笔者之前的另一篇博文AQS源码学习笔记中详细介绍,不再赘述。我么这里重点关注自定义同步器Sync重写的tryAcquire方法:
protected final boolean tryAcquire(int acquires) { /* * Walkthrough: * 1. If read count nonzero or write count nonzero * and owner is a different thread, fail. * 2. If count would saturate, fail. (This can only * happen if count is already nonzero.) * 3. Otherwise, this thread is eligible for lock if * it is either a reentrant acquire or * queue policy allows it. If so, update state * and set owner. */ Thread current = Thread.currentThread(); int c = getState(); int w = exclusiveCount(c); if (c != 0) { // (Note: if c != 0 and w == 0 then shared count != 0) if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w + exclusiveCount(acquires) > MAX_COUNT) throw new Error("Maximum lock count exceeded"); // Reentrant acquire setState(c + acquires); return true; } if (writerShouldBlock() || !compareAndSetState(c, c + acquires)) return false; setExclusiveOwnerThread(current); return true; }
首先调用获取了一下state值,然后调用exclusiveCount方法获取当前写锁的数量。
然后做了一个判断,当c!=0时:如果w==0(即读锁的数量!=0),直接返回false。因为我们前面已经说过,读锁和写锁不能同时存在。当c!=0且W!=0的时候,有写锁存在,如果写锁不是由当前线程持有(注意,写锁是独占锁,只能由一个线程持有),直接返回false。如果是当前线程持有写锁,说明当前线程正在试图“重入”写锁。调用setState更新status值。注意,由于写锁是独占锁,因此执行到setState这一步时不可能出现竞争,因此不用调用CAS操作,直接setState即可。
注意:如果一个线程在持有读锁的情况下去申请写锁(试图锁升级),会导致思索。tryAcquire在这种情况下返回false,AQS的acquire方法会将当前线程放入等待队列去等待写锁,在获取写锁之前不会释放锁持有的读锁,而读锁和写锁不能同时存在,发生死锁,他将永远不能获取这个写锁,其他线程也不能获取写锁,但读锁可被正常获取,只是永远不能获取写锁了。
如果c==0时,说明不存在任何锁。调用writerShouldBlock方法判断一下此时线程是否应该进入等待队列。注意:公平模式&非公平模式下的writerShouldBlock是不同的,非公平模式下,writerShouldBlock方法直接返回false,这也符合非公平的语义:
final boolean writerShouldBlock() { return false; // writers can always barge }
而公平模式下,则调用方法,判断下等待队列中,当前线程之前是否有其他线程正在等待:
final boolean writerShouldBlock() { return hasQueuedPredecessors(); }
注意,如果有,那么我们当时获取status的值的时候,这些线程还没来得及更改status值(因为我们当时获取的status为0),原因可能是应为刚到,或者刚被唤醒,在自旋中,还没有成功获取锁。
public final boolean hasQueuedPredecessors() { // The correctness of this depends on head being initialized // before tail and on head.next being accurate if the current // thread is first in queue. Node t = tail; // Read fields in reverse initialization order Node h = head; Node s; return h != t && ((s = h.next) == null || s.thread != Thread.currentThread()); }
返回true必须满足两个条件:①队列非空②第一个等待线程(head.next)为空 或 不为空但不是当前线程。head.next为空的情形是:在我们获取head之后,head就被队列中下一个等待线程线程踢出队列了,next被置为空,那么踢他出去的这个线程一定不是当前线程,说明有其他线程等待在队列中。
我们回到tryAcquire方法中,当发现writerShouldBlock为true,或者writerShouldBlock为false但在CAS操作中失败时(由于这里的获取写锁不是重入,因此可能有多个线程同时竞争写锁),返回false。如果CAS成功,则调用setExclusiveOwnerThread将当前持有写锁的线程设置为当前线程。
2、release 释放写锁
public void unlock() { sync.release(1); }
与ReentrantLock一样,unlock方法调用AQS提供的release方法:
public final boolean release(int arg) { if (tryRelease(arg)) { Node h = head; if (h != null && h.waitStatus != 0) unparkSuccessor(h); return true; } return false; }
release方法已经在笔者之前的另一篇博文AQS源码学习笔记中详细介绍,不再赘述。我么这里重点关注自定义同步器Sync重写的tryRelease方法:
protected final boolean tryRelease(int releases) { if (!isHeldExclusively()) throw new IllegalMonitorStateException(); int nextc = getState() - releases; boolean free = exclusiveCount(nextc) == 0; if (free) setExclusiveOwnerThread(null); setState(nextc); return free; }
首先,我们需要清楚一点:tryRelease方法的返回值不是表示是否成功获取,而是表示当前释放操作完成后,剩余写锁数量是否等于0(即完成此释放后,写锁是否可用)。这与同样是可重入的ReentrantLock的tryRelease方法一样,ReentrantLock的tryRelease方法返回值的意义也是剩余写锁数量是否等于0(即完成此释放后,写锁是否可用)。
3、tryLock 获取写锁
public boolean tryLock( ) { return sync.tryWriteLock(); }
WriteLock的tryLock方法调用自定义同步器Sync的tryWriteLock方法实现:
final boolean tryWriteLock() { Thread current = Thread.currentThread(); int c = getState(); if (c != 0) { int w = exclusiveCount(c); if (w == 0 || current != getExclusiveOwnerThread()) return false; if (w == MAX_COUNT) throw new Error("Maximum lock count exceeded"); } if (!compareAndSetState(c, c + 1)) return false; setExclusiveOwnerThread(current); return true; }
tryWriteLock方法看上去跟tryAcquire方法真的很像。唯一的区别在于,tryWriteLock忽略的writerShouldBlock方法,即,默认调用tryLock方法的时机,就是需要我们去“抢”写锁的时机。
二、读锁
1、lock 获取读锁
public void lock() { sync.acquireShared(1); }
ReadLock的lock方法调用AQS提供的acquireShared方法来实现:
public final void acquireShared(int arg) { if (tryAcquireShared(arg) < 0) doAcquireShared(arg); }
acquireShared方法已经在笔者之前的另一篇博文AQS源码学习笔记中详细介绍,不再赘述。我们重点关注自定义同步器Sync重写的tryAcquireShared方法:
protected final int tryAcquireShared(int unused) { /* * Walkthrough: * 1. If write lock held by another thread, fail. * 2. Otherwise, this thread is eligible for * lock wrt state, so ask if it should block * because of queue policy. If not, try * to grant by CASing state and updating count. * Note that step does not check for reentrant * acquires, which is postponed to full version * to avoid having to check hold count in * the more typical non-reentrant case. * 3. If step 2 fails either because thread * apparently not eligible or CAS fails or count * saturated, chain to version with full retry loop. */ Thread current = Thread.currentThread(); int c = getState(); if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return -1; int r = sharedCount(c); if (!readerShouldBlock() && r < MAX_COUNT && compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return 1; } return fullTryAcquireShared(current); }
方法首先检测了一下当前是否有其他线程持有写锁,如果是的话,直接返回-1,表示获取失败。后续AQS的acquireShared方法会将当前线程放入等待队列中。
然后方法做了这样一个判断,如果当前线程可以直接参与竞争读锁的话,就调用CAS操作将status值加一个SHARED_UNIT,注意,这里不是加1是应为status的高16位代表读锁的数量。
OK,我们必须在这里暂停一下,我们需要详细解释一下几个成员变量:
static final class HoldCounter { int count = 0; // Use id, not reference, to avoid garbage retention final long tid = getThreadId(Thread.currentThread()); }
static final class ThreadLocalHoldCounter extends ThreadLocal{ public HoldCounter initialValue() { return new HoldCounter(); } }
private transient ThreadLocalHoldCounter readHolds; private transient HoldCounter cachedHoldCounter; private transient Thread firstReader = null; private transient int firstReaderHoldCount;
HoldCounter是一个final的内部类,有两个成员:tid&count,分别代表一个线程ID和线程对应的一个计数值。
ThreadLocalHoldCounter是一个final的内部类,它继承自ThreadLocal
readHolds存在的作用是:记录所有持有读锁的线程所持有读锁的数量。对于写锁来说,它是独占锁,我们可以通过status的低16位+独占写锁的线程来记录关于写锁的所有信息,即它被谁持有&被重入的数量。而读锁是一个共享锁,任何线程都可能持有它,因此,我们必须对每个线程都记录一下它所持有的共享锁(读锁)的数量。本地变量ThreadLocal来实现这个记录是非常合适的。
cachedHoldCounter是一个缓存。很多情况下,一个线程获取读锁之后要更新一下它对应的记录值(线程对应的HoldCounter对象),然后有很大可能在很短的时间内就释放掉读锁,这时候需要再次更新HoldCounter,甚至需要从readHolds中删除(如果重入的读锁都被释放掉的话),需要调用readHolds的get方法,这是有一定开销的。因此,设置cachedHoldCounter作为一个缓存,在某个线程需要这个记录值的时候,先检查cachedHoldCounter对应的线程是否是这个线程自己,如果不是的话,再熊readHolds中get出来,这提高了效率。
firsReader&firstReaderHoldCount,这两个值记录了第一个获取读锁的线程和它持有的读锁的数量(可重入的嘛),这两个值在读锁全部释放之后要清空,以便记录下一次首先获取读锁的线程和其锁数目。这两个值存在的意义是:很多时候,读锁只被一个线程获取,这时候我们规定,第一个获取读锁的线程的计数不放入readHolds中,而是单独用这两个计数值来记录,这就避免了当只有一个线程操作读锁的时候,频繁地在readHolds上读取,提高了效率。
注意区别:cachedHoldCounter提高的是一个线程获取-释放之间没有其他线程来获取或释放锁时的效率;firsReader&firstReaderHoldCount提高的是只有一个线程操作锁时的效率。
这时候我们再回到tryAcquireShared方法,当CAS操作成功后,需要去更新刚刚说过的计数值。具体细节代码已经很清楚,不再赘述。
如果CAS失败或readerShouldBlock方法返回true,我们调用fullTryAcquireShared方法继续试图获取读锁。fullTryAcquireShared方法是tryAcquireShared方法的完整版,或者叫升级版,它处理了CAS失败的情况和readerShouldBlock返回true的情况。
在分析fullTryAcquireShared方法之前,我们先来看一下readerShouldBlock方法:
在公平模式下,根据等待队列中在当前线程之前有没有等待线程来判断:
final boolean readerShouldBlock() { return hasQueuedPredecessors(); }
而在非公平模式下:
final boolean readerShouldBlock() { return apparentlyFirstQueuedIsExclusive(); }
调用了apparentlyFirstQueuedIsExclusive方法:
final boolean apparentlyFirstQueuedIsExclusive() { Node h, s; return (h = head) != null && (s = h.next) != null && !s.isShared() && s.thread != null; }
这个方法返回是否队列的head.next正在等待独占锁(写锁)。当然这个方法执行的过程中队列的形态可能发生变化。这个方法的意思是:读锁不应该让写锁始终等待。
好了,我们现在来看fullTryAcquireShared方法:
/** * Full version of acquire for reads, that handles CAS misses * and reentrant reads not dealt with in tryAcquireShared. */ final int fullTryAcquireShared(Thread current) { /* * This code is in part redundant with that in * tryAcquireShared but is simpler overall by not * complicating tryAcquireShared with interactions between * retries and lazily reading hold counts. */ HoldCounter rh = null; for (;;) { int c = getState(); if (exclusiveCount(c) != 0) { if (getExclusiveOwnerThread() != current) return -1; // else we hold the exclusive lock; blocking here // would cause deadlock. } else if (readerShouldBlock()) { // Make sure we're not acquiring read lock reentrantly if (firstReader == current) { // assert firstReaderHoldCount > 0; } else { if (rh == null) { rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) { rh = readHolds.get(); if (rh.count == 0) readHolds.remove(); } } if (rh.count == 0) return -1; } } if (sharedCount(c) == MAX_COUNT) throw new Error("Maximum lock count exceeded"); if (compareAndSetState(c, c + SHARED_UNIT)) { if (sharedCount(c) == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { if (rh == null) rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; cachedHoldCounter = rh; // cache for release } return 1; } } }
我们可以看到:fullTryAcquireShared方法是tryAcquireShared方法的完整版,或者叫升级版,它处理了CAS失败的情况和readerShouldBlock返回true的情况。
跟tryAcquireShared方法一样,首先检查是否有其他线程正在持有写锁,如果是,直接返回false。如果没有线程正在持有写锁,则调用readerShouldBlock检测当前线程是否应该进入等待队列。就算readerShouldBlock方法返回true,原因可能因为当前是公平模式或者队列的第一个等待线程(head.next)正在等待写锁,我们也不能直接返回false,因为返回false意味着当前线程将要进入等待队列(见AQS的acquireShared方法),原因是:①如果当前线程正在持有读锁,且这次读锁的重入被放入等待队列,万一之前队列中有线程正在等待写锁,将会导致死锁;②另一种情况是当前线程正在持有写锁,且这次读锁的“降级申请”被放入等待队列,如果队列中之前有线程正在等待锁,不论等待的是写锁还是读锁,都将导致死锁。
因此,我们需要做一个判断,如果这次申请读锁是对读锁的一次重入(因为我们已经检测过没有写锁,因此只考虑上述第①种情况),我们将不能返回false(返回false意味着进队列),而是调用CAS操作去获取读锁,如果CAS失败,则一直自旋,直到成功获取,或者可以返回false去队列的时机的到来。
我们可以这样提fullTryAcquireShared方法说句话:不是我不想进队列休息,实在是因为进队列有可能死锁,所以我才一直自旋!
注意:判断重入的时候firstReader==当前线程即说明是一次重入,因为firstReader线程释放最后一个读锁的时候会将firstReader置为null,这里还不是null,说明依然持有读锁。
另外还记得我们提过apparentlyFirstQueuedIsExclusive方法是不可靠的吗,它在检测的过程中队列结构可能被更改,head可能被踢出,方法可能因为head.next为null而返回false。而且它也只是检测第一个等待线程(head.next),如果有等待写锁的线程在后面,它也不能检测出来。不过没关系,这些都导致它返回false,返回false意味着fullTryAcquireShared可以去抢“锁”并不会影响正确性。
2、unlock 释放读锁
public void unlock() { sync.releaseShared(1); }
readLock的unlock方法调用AQS提供的releaseShared方法实现:
public final boolean releaseShared(int arg) { if (tryReleaseShared(arg)) { doReleaseShared(); return true; } return false; }
releaseShared方法已在笔者的另一篇博文AQS源码学习笔记中详细介绍,不再赘述。这里我们关注自定义同步器Sync重写的tryReleaseShared方法:
protected final boolean tryReleaseShared(int unused) { Thread current = Thread.currentThread(); if (firstReader == current) { // assert firstReaderHoldCount > 0; if (firstReaderHoldCount == 1) firstReader = null; else firstReaderHoldCount--; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) rh = readHolds.get(); int count = rh.count; if (count <= 1) { readHolds.remove(); if (count <= 0) throw unmatchedUnlockException(); } --rh.count; } for (;;) { int c = getState(); int nextc = c - SHARED_UNIT; if (compareAndSetState(c, nextc)) // Releasing the read lock has no effect on readers, // but it may allow waiting writers to proceed if // both read and write locks are now free. return nextc == 0; } }
分为三部分:①如果是firstReader,对firstReader修改;②如果不是firstReader,修改readHolds;③CAS自旋更新status值。
注意:tryReleaseShared方法的返回值如果为true,表示status为0,即已经不存在任何锁,both读锁&写锁。
3、tryLock 获取读锁
public boolean tryLock() { return sync.tryReadLock(); }
ReadLock的tryLock调用自定义同步器Sync的tryReadLock方法实现:
final boolean tryReadLock() { Thread current = Thread.currentThread(); for (;;) { int c = getState(); if (exclusiveCount(c) != 0 && getExclusiveOwnerThread() != current) return false; int r = sharedCount(c); if (r == MAX_COUNT) throw new Error("Maximum lock count exceeded"); if (compareAndSetState(c, c + SHARED_UNIT)) { if (r == 0) { firstReader = current; firstReaderHoldCount = 1; } else if (firstReader == current) { firstReaderHoldCount++; } else { HoldCounter rh = cachedHoldCounter; if (rh == null || rh.tid != getThreadId(current)) cachedHoldCounter = rh = readHolds.get(); else if (rh.count == 0) readHolds.set(rh); rh.count++; } return true; } } }
与写锁的tryWriteLock方法类似,tryReadLock同样忽略了readerShouldBlock方法,因为调用这个方法就意味着:现在是适合抢占的时机。
tryReadLock方法与tryAcquireShared方法十分类似,不同在于:当CAS失败时,tryAcquireShared方法调用fullAcquireShared处理CAS失败,而tryReadLock方法遇到CAS失败时,直接返回false,毕竟只是try嘛。
总结:
ReentrantReadWriteLock相比于其他锁,还是比较复杂的,因为他结合了共享锁和独占锁,并混合使用了他们。虽然ReentrantReadWriteLock通过精巧的设计尽量避免死锁的发生,但如果我们使用不当仍然可能发生死锁,比如我们在持有读锁的情况下去申请写,企图做锁升级。