- Anaconda 和 Miniconda:功能详解与选择建议
古月฿
python入门pythonconda
Anaconda和Miniconda详细介绍一、Anaconda的详细介绍1.什么是Anaconda?Anaconda是一个开源的包管理和环境管理工具,在数据科学、机器学习以及科学计算领域发挥着关键作用。它以Python和R语言为基础,为用户精心准备了大量预装库和工具,极大地缩短了搭建数据科学环境的时间。对于那些想要快速开展数据分析、模型训练等工作的人员来说,Anaconda就像是一个一站式的“数
- centos7安装配置 Anaconda3
Anaconda是一个用于科学计算的Python发行版,Anaconda于Python,相当于centos于linux。下载[root@testsrc]#mwgethttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.shBegintodownload:Anaconda3-5.2.0-L
- DataFrame(数据框)
追逐此刻
SQLsql
一种二维表格型数据结构,类似于电子表格(如Excel)或SQL表,由行(记录)和列(字段)组成。它是数据分析、机器学习和科学计算中最常用的数据结构之一,尤其在Python的Pandas库中被广泛使用。1.DataFrame的核心特点特点说明二维结构类似表格,有行(记录)和列(字段)。列名(ColumnNames)每列有一个名称(如name,age,salary)。行索引(Index)每行有一个索引
- python怎么学?
靓仔668
python开发语言青少年编程
一、python是什么?Python是一种高级、解释型、面向对象的编程语言。它具有简洁的语法和易于阅读的代码,被广泛用于计算机编程和科学计算。Python支持多种编程范式,包括面向过程、面向对象和函数式编程。它拥有广泛的标准库和第三方库,可以用于各种任务,例如Web开发、数据分析、人工智能等。Python的设计思想强调代码的可读性和简洁性,使得它成为许多新手和专业开发者的首选编程语言。二、使用步骤
- 存算一体芯片近内存矩阵分解加速:架构创新与计算范式革命
Liudef06小白
人工智能矩阵架构线性代数人工智能
存算一体芯片近内存矩阵分解加速:架构创新与计算范式革命数据洪流中,矩阵分解这一数学基石正在新型硬件上获得新生在科学计算与人工智能领域,矩阵分解作为基础数学工具,长期面临着冯·诺依曼架构的算力瓶颈。传统计算架构中数据在内存与处理器间的频繁搬运消耗了60%以上能量,成为制约大规模矩阵计算效率的关键痛点。存算一体技术的兴起正从根本上重塑这一格局,其核心在于消除数据搬运,直接在存储单元完成计算操作。202
- 【对比】群体智能优化算法 vs 贝叶斯优化
TIM老师
transformer深度学习人工智能
在机器学习、工程优化和科学计算中,优化算法的选择直接影响问题求解的效率与效果。群体智能优化算法(SwarmIntelligence,SI)和贝叶斯优化(BayesianOptimization,BO)是两种截然不同的优化范式,分别以不同的哲学和数学基础解决高维、非凸、多峰等问题。本文将从原理、特点到应用场景,深入解析两者的异同。一、基础概念1.群体智能优化算法群体智能算法受自然界生物群体行为启发(
- 87号日精进
李佳蔓_ae18
敬爱的李老师,智慧的班主任,亲爱的跃友们:大家好!我是来自北京八分客健康科技有限公司公司的李雪春。今天是我的日精进行动第111天,给大家分享我今天的进步,我们互相勉励,携手前行。每天进步一点点,距离成功便不远。1、比学习:来华之梦学习《薪酬与产值》,好的薪酬机制是经过科学计算的,不同的岗位薪酬侧重点是不同的,比例分配合理企业才有活力与持续性。2、比改变:自己改变了,周围的一切就都改变了。3、比付出
- Scikitlearn:Python机器学习库
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-Scikit-learn:Python机器学习库1.背景介绍1.1什么是Scikit-learnScikit-learn是一个基于Python语言的开源机器学习库。它建立在NumPy、SciPy和matplotlib等优秀的科学计算库之上,为用户提供了一系列高效的数据挖掘和数据分析工具,涵盖了分类、回归、聚类、降维、模型选择和预处理等机器学习的各个方面。Scikit-learn的目标是提供一个高
- 【OpenCV-Python】——图像处理基础&读写及显示图像&读写及播放视频&灰度图/彩色图/图像通道操作、运算
柯宝最帅
OpenCV学习pythonopencv图像处理
目录前言:1、读并显示图像、写图像2、读并播放视频、写视频3、操作灰度图和彩色图、图像通道操作、运算总结:前言:在Python中,OpenCV使用NumPy数组存储图像,Numpy是使用Python进行数组计算的软件包,提供强大的N维数组对象,支持复杂的广播功能(数组运算),集成了C/C++和Fortran代码工具,支持线性代数、傅里叶变换和随机数等特性,还可作为通用数据的高效多维容器,如在Ope
- 基于 NumPy 的高效数值计算技术解析与实践指引
二向箔reverse
numpy
在数据处理与科学计算领域,高效是核心诉求。NumPy作为Python生态高效数值计算的基石,以高性能多维数组对象及配套函数,成为数据从业者的必备工具。其数组支持算术、比较、逻辑等丰富运算,通过向量化操作直接处理每个元素,无需循环,大幅提升代码效率与简洁度。算术运算NumPy数组可以直接进行加减乘除等算术运算,运算规则是对应元素之间进行操作。a=np.array([1,2,3,4,5])b=np.a
- chatgpt赋能Python-pythoninterpreter报错
yakuchrisfor
ChatGptpythonchatgpt数据挖掘
PythonInterpreter报错:初学者的困惑与解决方法介绍Python是一种广泛应用于科学计算、数据分析和人工智能等领域的编程语言,因其简单易学、强大灵活、开源免费等特点而备受开发者欢迎。然而,学习Python也会遇到各种各样的问题,其中一个常见问题就是PythonInterpreter报错。在编写Python代码时,我们通常是通过PythonInterpreter(解释器)来执行代码的。
- Conda虚拟环境
Neng_Miao
conda
Conda虚拟环境使用Conda管理Python虚拟环境Conda是一个开源的包管理系统和环境管理系统,特别适合数据科学和科学计算领域。它不仅可以管理Python包,还能管理非Python的依赖项。安装Conda首先需要安装Anaconda或Miniconda:Anaconda-包含大量预装的数据科学包Miniconda-最小化安装,只包含Conda和Python基本Conda命令1.创建新环境c
- Python进阶第三方库之Numpy
了解Numpy运算速度上的优势知道数组的属性,形状、类型应用Numpy实现数组的基本操作应用随机数组的创建实现正态分布应用应用Numpy实现数组的逻辑运算应用Numpy实现数组的统计运算应用Numpy实现数组之间的运算一、Numpy优势Numpy(NumericalPython)是一个开源的Python科学计算库,用于快速处理任意维度的数组。Numpy支持常见的数组和矩阵操作。对于同样的数值计算任
- Python进阶第三方库之Numpy
paid槮
pythonnumpy开发语言
了解Numpy运算速度上的优势知道数组的属性,形状、类型应用Numpy实现数组的基本操作应用随机数组的创建实现正态分布应用应用Numpy实现数组的逻辑运算应用Numpy实现数组的统计运算应用Numpy实现数组之间的运算一、Numpy优势Numpy(NumericalPython)是一个开源的Python科学计算库,用于快速处理任意维度的数组。Numpy支持常见的数组和矩阵操作。对于同样的数值计算任
- Python的MATLAB使用
Python和MATLAB是两种不同的编程语言,它们各自拥有不同的生态系统和库。然而,你可以在Python中使用一些方法来实现与MATLAB类似的功能。以下是一些方法和库,可以帮助你在Python中实现MATLAB风格的编程:1.NumPy:NumPy是Python中用于科学计算的基础库,它提供了大量的矩阵和数组操作功能。NumPy的API与MATLAB在很多方面都非常相似,因此你可以使用NumP
- Python 入门手札:从 0 到会--第九天Python的模块化编程--模块、包以及常见系统模块和第三方模块总结
目录一、模块1.模块化编程(ModularProgramming)2.什么是模块(Module)3.模块的分类3.1内置模块(标准库模块)3.1.1.与操作系统交互3.1.2.文件与数据处理3.1.3.正则表达式与文本处理3.1.4.数学与随机数3.1.5.时间与日期3.1.6.数据结构与算法3.1.7.网络与服务3.1.8.异常与调试3.2第三方模块3.2.1.科学计算与数据分析3.2.2.机器
- Python关于pandas的基础知识
WeiJingYu.
pythonpandas开发语言
一.扫盲(一)、pandas是什么pandas是Python的一个第三方数据处理库,它提供了高效、灵活的数据结构(如Series和DataFrame),能方便地对结构化数据进行清洗、转换、分析和处理。(二)、pandas与NumPy的关系NumPy是Python中用于科学计算的基础库,主要用于存储和处理数值型数组。但它有一个局限,就是不能直接存储和处理字符串等非数值类型的数据。而pandas是在N
- Python关于numpy的基础知识数组的升维
WeiJingYu.
pythonnumpy开发语言
在Python数据处理中,numpy是常用的科学计算库,数组操作是其核心内容之一。下面通过代码示例,展示如何从Python自带列表构建numpy一维数组,再进一步升维构建二维数组。\importnumpyasnp#一维数组构建:从Python列表到numpy一维数组list1=[1,2,3,4,5]#Python自带的列表数据类型print("Python列表list1:",list1)v=np.
- 精通 triton 使用 MLIR 的源码逻辑 - 第001节:triton 的应用简介
项目使用到MLIR,通过了解triton对MLIR的使用,体会到MLIR在较大项目中的使用方式,汇总一下。1.Triton概述OpenAITriton是一个开源的编程语言和编译器,旨在简化GPU高性能计算(HPC)的开发,特别是针对深度学习、科学计算等需要高效并行计算的领域。既允许开发者编写高度优化的代码,又不必过度关注底层硬件细节。这样,通过简化高性能计算,可以加速新算法的实现和实验。传统GPU
- 科学计算库Numpy
文章目录科学计算库Numpy一、numpy概述1.numpy`历史`2.numpy的核心:多维数组+数值计算二、Numpy基础ndarray数组1.内存中的ndarray对象元数据(metadata)实际数据2.ndarray数组对象的特点3.ndarray数组对象的创建1)np.array(任何可被解释为Numpy数组的逻辑结构)2)np.arange(起始值(0),终止值,步长(1))3)np
- 空间曲线正交投影及其距离计算的理论与实践
老歌老听老掉牙
python正交投影
引言:正交投影的几何本质在三维空间中,正交投影是一种基础而重要的几何变换,它将空间中的点沿特定方向映射到一个平面上。当我们考虑将空间曲线投影到由给定法向量n\mathbf{n}n定义的平面时,这一问题在计算机图形学、CAD/CAM系统和科学计算中具有广泛应用。本文将从数学原理、Python实现到距离计算的等价性问题,全面探讨这一几何操作的深层内涵。设空间曲线由参数方程r(t)=(x(t),y(t)
- 老码农和你一起学AI:Python系列-Pandas 并行计算
chilavert318
熬之滴水穿石pandaspython
但凡用到科学计算,Pandas几乎是绕不开的工具——它以简洁的API、灵活的数据操作能力成为数据处理的“瑞士军刀”。但随着数据量增长(比如从10万行到1000万行),你可能会发现:原本流畅的代码突然变慢了,一个简单的apply操作要等好几分钟,读取大文件时进度条仿佛凝固了。这不是你的代码有问题,而是原生Pandas的“单线程”基因在多核时代遇到了瓶颈。并行计算正是解决这个问题的核心方案。简单来说,
- Python 数据插值:NumPy 实现多种插值方法
Python数据插值:用NumPy解锁缺失数据的秘密拼图关键词数据插值、NumPy、线性插值、多项式插值、缺失值处理、数据平滑、数值分析摘要在数据分析和科学计算中,我们经常遇到离散或缺失的观测数据——比如气象站每小时记录的温度值有缺失,或者实验中只采集了稀疏的采样点。这时候,数据插值(Interpolation)就像“数据修复师”,能根据已知点推断出未知点的数值,让离散数据变成连续的“故事”。本文
- 轻松拿捏Anaconda安装,Python开发快人一步
奔跑吧邓邓子
必备核心技能python开发语言Anaconda科学计算
目录一、Anaconda是什么1.1包管理与环境管理1.2预装丰富的科学计算库二、为什么选择Anaconda2.1简化依赖管理2.2避免版本冲突2.3丰富的库资源2.4适合的应用场景三、安装前准备3.1确认系统要求3.2下载安装包四、Windows系统安装步骤4.1运行安装程序4.2许可协议4.3选择安装类型4.4选择安装路径4.5高级选项4.6安装完成五、MacOS系统安装步骤5.1下载安装包5
- Python,Go开发光电效应与日常应用APP
Geeker-2025
pythongolang
以下是一个基于Python与Go开发的光电效应科普与应用APP的完整技术方案,结合了物理原理模拟、实时数据处理及生活场景应用,参考了工业级开发实践(如光电实验数据处理和能源设备控制):---###一、系统架构设计```mermaidgraphLRA[Go微服务层]-->B[Python科学计算层]A-->C[数据库/物联网]B-->D[硬件接口]D-->E[传感器/实验设备]subgraph前端A
- 【C++特殊工具与技术】固有的不可移植的特性(3)::extern“C“
在软件开发中,混合编程是常见需求:C++调用C语言编写的底层库(如Linux系统调用)、C程序调用C++实现的算法模块,甚至C++与Ada、Fortran等其他语言交互。但不同语言在函数命名规则和调用约定上的差异,会导致链接阶段出现“无法解析的外部符号”错误。目录一、命名修饰与链接问题:CvsC++1.1C++的命名修饰机制1.2C语言的“无修饰”命名1.3链接失败的典型场景二、extern"C"
- Anaconda 详细下载与安装教程
Anaconda详细下载与安装教程1.简介Anaconda是一个用于科学计算的开源发行版,包含了Python和R的众多常用库。它还包括了conda包管理器,可以方便地安装、更新和管理各种软件包。2.下载Anaconda2.1访问官方网站首先,打开浏览器,访问Anaconda官方网站。2.2选择适合的版本在页面中,你会看到两个主要的下载选项:AnacondaIndividualEdition:适用于
- Python的科学计算库NumPy(一)
linlin_1998
pythonnumpy开发语言
NumPy(NumericalPython)是Python中最基础、最重要的科学计算库之一,提供了高性能的多维数组(ndarray)对象和大量数学函数,是许多数据科学、机器学习库(如Pandas、SciPy、TensorFlow等)的基础依赖。1.创建一个numpy里面的一维数组importnumpyasnp###通过array方法创建一个ndarrayarray1=np.array([1,2,3
- C++系列(十一):文件操作神技 --- 从文本到二进制,彻底玩转数据持久化!
傅里叶的耶
C++语言系列(教程+实战)c++文本操作
引言在瞬息万变的程序世界中,内存数据如同沙堡般脆弱——程序关闭的瞬间,所有精心计算的成果、用户定制的配置、酣战已久的游戏进度都归于虚无。正是这种数据易逝性,让文件操作成为C++开发者必须掌握的核心生存技能。当你的应用需要记住用户偏好,当科学计算需要导出万亿级结果,当游戏需要保存玩家征程,文件I/O便是连接代码与现实世界的终极桥梁。通过fstream三剑客(ofstream/ifstream/fst
- 显卡GPU的架构和工作原理
InnoLink_1024
芯片人工智能AGI架构硬件架构人工智能
显卡GPU(图形处理单元)是专为并行计算和图形处理设计的芯片,广泛应用于游戏、科学计算、人工智能和数据中心等领域。以下详细介绍GPU的架构和工作原理,涵盖核心组件、计算流程和关键技术,尽量简洁清晰。一、GPU架构概述GPU架构与CPU不同,专注于高并行计算,适合处理大量简单、重复的任务。其核心设计目标是最大化吞吐量,而非单任务的低延迟。主流GPU厂商(如NVIDIA、AMD、Intel)架构虽有差
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla